Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Eur Respir J ; 55(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31949110

RESUMO

Endothelial dysfunction is a hallmark of pulmonary arterial hypertension (PAH) but there are no established methods to study pulmonary artery endothelial cells (PAECs) from living patients. We sought to culture PAECs from pulmonary artery catheter (PAC) balloons used during right-heart catheterisation (RHC) to characterise successful culture attempts and to describe PAEC behaviour.PAECs were grown in primary culture to confluence and endothelial cell phenotype was confirmed. Standard assays for apoptosis, migration and tube formation were performed between passages three to eight. We collected 49 PAC tips from 45 subjects with successful PAEC culture from 19 balloons (39%).There were no differences in subject demographic details or RHC procedural details in successful versus unsuccessful attempts. However, for subjects who met haemodynamic criteria for PAH, there was a higher but nonsignificant (p=0.10) proportion amongst successful attempts (10 out of 19, 53%) versus unsuccessful attempts (nine out of 30, 30%). A successful culture was more likely in subjects with a lower cardiac index (p=0.03) and higher pulmonary vascular resistance (p=0.04). PAECs from a subject with idiopathic PAH were apoptosis resistant compared to commercial PAECs (p=0.04) and had reduced migration compared to PAECs from a subject with portopulmonary hypertension with high cardiac output (p=0.01). PAECs from a subject with HIV-associated PAH formed fewer (p=0.01) and shorter (p=0.02) vessel networks compared to commercial PAECs.Sustained culture and characterisation of PAECs from RHC balloons is feasible, especially in PAH with high haemodynamic burden. This technique may provide insight into endothelial dysfunction during PAH pathogenesis.


Assuntos
Artéria Pulmonar , Doenças Vasculares , Catéteres , Células Cultivadas , Células Endoteliais , Humanos , Pulmão
2.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31391272

RESUMO

Human immunodeficiency virus (HIV-1) entry into cells is mediated by the viral envelope glycoprotein (Env) trimer, which consists of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. When gp120 binds sequentially to the receptors CD4 and CCR5 on the target cell, the metastable Env trimer is triggered to undergo entry-related conformational changes. PF-68742 is a small molecule that inhibits the infection of a subset of HIV-1 strains by interfering with an Env function other than receptor binding. Determinants of HIV-1 resistance to PF-68742 map to the disulfide loop and fusion peptide of gp41. Of the four possible PF-68742 stereoisomers, only one, MF275, inhibited the infection of CD4-positive CCR5-positive cells by some HIV-1 strains. MF275 inhibition of these HIV-1 strains occurred after CD4 binding but before the formation of the gp41 six-helix bundle. Unexpectedly, MF275 activated the infection of CD4-negative CCR5-positive cells by several HIV-1 strains resistant to the inhibitory effects of the compound in CD4-positive target cells. In contrast to CD4 complementation by CD4-mimetic compounds, activation of CD4-independent infection by MF275 did not depend upon the availability of the gp120 Phe 43 cavity. Sensitivity to inhibitors indicates that MF275-activated virus entry requires formation/exposure of the gp41 heptad repeat (HR1) as well as CCR5 binding. MF275 apparently activates a virus entry pathway parallel to that triggered by CD4 and CD4-mimetic compounds. Strain-dependent divergence in Env conformational transitions allows different outcomes, inhibition or activation, in response to MF275. Understanding the mechanisms of MF275 activity should assist efforts to optimize its utility.IMPORTANCE Envelope glycoprotein (Env) spikes on the surface of human immunodeficiency virus (HIV-1) bind target cell receptors, triggering changes in the shape of Env. We studied a small molecule, MF275, that also induced shape changes in Env. The consequences of MF275 interaction with Env depended on the HIV-1 strain, with infection by some viruses inhibited and infection by other viruses enhanced. These studies reveal the strain-dependent diversity of HIV-1 Envs as they undergo shape changes in proceeding down the entry pathway. Appreciation of this diversity will assist attempts to develop broadly active inhibitors of HIV-1 entry.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/classificação , HIV-1/efeitos dos fármacos , Piridonas/farmacologia , Sulfonamidas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Piridonas/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Estereoisomerismo , Sulfonamidas/química , Replicação Viral
3.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618643

RESUMO

The mature envelope glycoprotein (Env) spike on the surfaces of human immunodeficiency virus type 1 (HIV-1)-infected cells and virions is derived from proteolytic cleavage of a trimeric gp160 glycoprotein precursor. In these studies, we compared the conformations of cleaved and uncleaved membrane Envs with truncated cytoplasmic tails to those of stabilized soluble gp140 SOSIP.664 Env trimers. Deletion of the gp41 cytoplasmic tail did not significantly affect the sensitivity of viruses with the HIV-1AD8 Env to inhibition by antibodies or a CD4-mimetic compound. After glutaraldehyde fixation and purification from membranes, a cleaved Env exhibited a hydrodynamic radius of ∼10 nm and an antibody-binding profile largely consistent with that expected based on virus neutralization sensitivity. The purified cleaved Env trimers exhibited a hollow architecture with a central void near the trimer axis. Uncleaved Env, cross-linked and purified in parallel, exhibited a hydrodynamic radius similar to that of the cleaved Env. However, the uncleaved Env was recognized by poorly neutralizing antibodies and appeared by negative-stain electron microscopy to sample multiple conformations. Compared with membrane Envs, stabilized soluble gp140 SOSIP.664 Env trimers appear to be more compact, as reflected in their smaller hydrodynamic radii and negative-stain electron microscopy structures. The antigenic features of the soluble gp140 SOSIP.664 Env trimers differed from those of the cleaved membrane Env, particularly in gp120 V3 and some CD4-binding-site epitopes. Thus, proteolytic maturation allows the membrane-anchored Env to achieve a conformation that retains functional metastability but masks epitopes for poorly neutralizing antibodies.IMPORTANCE The entry of human immunodeficiency virus type 1 (HIV-1) into host cells is mediated by the envelope glycoprotein (Env) spike on the surface of the virus. Host antibodies elicited during natural HIV-1 infection or by vaccination can potentially recognize the Env spike and block HIV-1 infection. However, the changing shape of the HIV-1 Env spike protects the virus from antibody binding. Understanding the shapes of natural and man-made preparations of HIV-1 Envs will assist the development of effective vaccines against the virus. Here, we evaluate the effects of several Env modifications commonly used to produce Env preparations for vaccine studies and the determination of structure. We found that the cleavage of the HIV-1 Env precursor helps Env to assume its natural shape, which resists the binding of many commonly elicited antibodies. Stabilized soluble Envs exhibit more compact shapes but expose some Env elements differently than the natural Env.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Linhagem Celular Tumoral , Cães , Glutaral/química , Células HEK293 , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/genética , Humanos , Conformação Proteica , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
4.
J Infect Dis ; 218(3): 471-475, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29617845

RESUMO

Background: Small-molecule CD4-mimetic compounds (CD4mc) inhibit human immunodeficiency virus (HIV-1) entry by blocking binding to the CD4 receptor and by premature triggering of the viral envelope glycoprotein (Env) spike. Methods: The efficacy of a CD4mc in protecting bone marrow-liver-thymus (BLT) humanized mice from vaginal HIV-1 challenge was evaluated. Results: Intravaginal application of the CD4mc JP-III-48, either before or simultaneously with virus challenge, protected BLT humanized mice from HIV-1JR-CSF infection in a dose- dependent manner. Conclusion: The direct antiviral effects of a CD4mc prevent HIV-1 infection in a murine model of sexual transmission.


Assuntos
Biomimética , Antígenos CD4/administração & dosagem , Inibidores da Fusão de HIV/administração & dosagem , Infecções por HIV/prevenção & controle , HIV-1/efeitos dos fármacos , Administração Intravaginal , Animais , Medula Óssea , Modelos Animais de Doenças , Feminino , Fígado , Camundongos SCID , Timo , Resultado do Tratamento
5.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881646

RESUMO

Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the viral envelope glycoproteins (Env), a trimer of three gp120 exterior glycoproteins, and three gp41 transmembrane glycoproteins. The metastable Env is triggered to undergo entry-related conformational changes when gp120 binds sequentially to the receptors, CD4 and CCR5, on the target cell. Small-molecule CD4-mimetic compounds (CD4mc) bind gp120 and act as competitive inhibitors of gp120-CD4 engagement. Some CD4mc have been shown to trigger Env prematurely, initially activating Env function, followed by rapid and irreversible inactivation. Here, we study CD4mc with a wide range of anti-HIV-1 potencies and demonstrate that all tested CD4mc are capable of activating as well as inactivating Env function. Biphasic dose-response curves indicated that the occupancy of the protomers in the Env trimer governs viral activation versus inactivation. One CD4mc bound per Env trimer activated HIV-1 infection. Envs with two CD4mc bound were activated for infection of CD4-negative, CCR5-positive cells, but the infection of CD4-positive, CCR5-positive cells was inhibited. Virus was inactivated when all three Env protomers were occupied by the CD4mc, and gp120 shedding from the Env trimer was increased in the presence of some CD4mc. Env reactivity and the on rates of CD4mc binding to the Env trimer were found to be important determinants of the potency of activation and entry inhibition. Cross-sensitization of Env protomers that do not bind the CD4mc to neutralization by an anti-V3 antibody was not evident. These insights into the mechanism of antiviral activity of CD4mc should assist efforts to optimize their potency and utility. IMPORTANCE: The trimeric envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) mediate virus entry into host cells. Binding to the host cell receptors, CD4 and CCR5, triggers changes in the conformation of the HIV-1 envelope glycoprotein trimer important for virus entry. Small-molecule CD4-mimetic compounds inhibit HIV-1 infection by multiple mechanisms: (i) direct blockade of the interaction between the gp120 exterior envelope glycoprotein and CD4; (ii) premature triggering of conformational changes in the envelope glycoproteins, leading to irreversible inactivation; and (iii) exposure of cryptic epitopes to antibodies, allowing virus neutralization. The consequences of the binding of the CD4-mimetic compound to the HIV-1 envelope glycoproteins depends upon how many of the three subunits of the trimer are bound and upon the propensity of the envelope glycoproteins to undergo conformational changes. Understanding the mechanistic factors that influence the activity of CD4-mimetic compounds can help to improve their potency and coverage of diverse HIV-1 strains.


Assuntos
Antígenos CD4/química , Proteína gp120 do Envelope de HIV/química , Mimetismo Molecular , Multimerização Proteica , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Anticorpos Neutralizantes/farmacologia , Antígenos CD4/genética , Antígenos CD4/metabolismo , Linhagem Celular , Células Gigantes , Anticorpos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/agonistas , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Mutação , Fenótipo , Ligação Proteica , Receptores CCR5/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Internalização do Vírus
6.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003492

RESUMO

Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis. In nature, HIV-1 Envs must balance the requirements to maintain the noncovalent association of gp120 with gp41 and to evade the host antibody response with the need to respond to CD4 binding. Here we show that the gp41 HR1 region contributes to gp120 association with the unliganded Env trimer. Changes in particular amino acid residues in the gp41 HR1 region decreased the efficiency with which Env moved from the unliganded state. Thus, these gp41 changes decreased the sensitivity of HIV-1 to cold inactivation and ligands that require Env conformational changes to bind efficiently. Conversely, these gp41 changes increased HIV-1 sensitivity to small-molecule entry inhibitors that block Env conformational changes induced by CD4. Changes in particular gp41 HR1 amino acid residues can apparently affect the relative stability of the unliganded state and CD4-induced conformations. Thus, the gp41 HR1 region contributes to the association with gp120 and regulates Env transitions from the unliganded state to downstream conformations.IMPORTANCE The development of an efficient vaccine able to prevent HIV infection is a worldwide priority. Knowledge of the envelope glycoprotein structure and the conformational changes that occur after receptor engagement will help researchers to develop an immunogen able to elicit antibodies that block HIV-1 transmission. Here we identify residues in the HIV-1 transmembrane envelope glycoprotein that stabilize the unliganded state by modulating the transitions from the unliganded state to the CD4-bound state.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , HIV-1/efeitos dos fármacos , Motivos de Aminoácidos , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Cães , Células HEK293 , HIV-1/fisiologia , Humanos , Piperazinas/química , Piperazinas/farmacologia
7.
J Virol ; 90(10): 5031-5046, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962221

RESUMO

UNLABELLED: The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE: Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.


Assuntos
Fármacos Anti-HIV/farmacologia , Anticorpos Neutralizantes/imunologia , Antígenos CD4/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Fármacos Anti-HIV/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/biossíntese , Antígenos CD4/metabolismo , Epitopos/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Infecções por HIV/virologia , Haplorrinos , Humanos , Imunização , Mimetismo Molecular , Fragmentos de Peptídeos/imunologia
8.
Virol J ; 14(1): 33, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209172

RESUMO

BACKGROUND: The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env), a Type 1 transmembrane protein, assembles into a trimeric spike complex that mediates virus entry into host cells. The high potential energy of the metastable, unliganded Env trimer is maintained by multiple non-covalent contacts among the gp120 exterior and gp41 transmembrane Env subunits. Structural studies suggest that the gp41 transmembrane region forms a left-handed coiled coil that contributes to the Env trimer interprotomer contacts. Here we evaluate the contribution of the gp41 transmembrane region to the folding and stability of Env trimers. METHODS: Multiple polar/charged amino acid residues, which hypothetically disrupt the stop-transfer signal, were introduced in the proposed lipid-interactive face of the transmembrane coiled coil, allowing release of soluble cleavage-negative Envs containing the modified transmembrane region (TMmod). We also examined effects of cleavage, the cytoplasmic tail and a C-terminal fibritin trimerization (FT) motif on oligomerization, antigenicity and functionality of soluble and membrane-bound Envs. RESULTS: The introduction of polar/charged amino acids into the transmembrane region resulted in the secretion of soluble Envs from the cell. However, these TMmod Envs primarily formed dimers. By contrast, control cleavage-negative sgp140 Envs lacking the transmembrane region formed soluble trimers, dimers and monomers. TMmod and sgp140 trimers were stabilized by the addition of a C-terminal FT sequence, but still exhibited carbohydrate and antigenic signatures of a flexible ectodomain structure. On the other hand, detergent-solubilized cleaved and uncleaved Envs isolated from the membranes of expressing cells exhibited "tighter" ectodomain structures, based on carbohydrate modifications. These trimers were found to be unstable in detergent solutions, but could be stabilized by the addition of a C-terminal FT moiety. The C-terminal FT domain decreased Env cleavage and syncytium-forming ability by approximately three-fold; alteration of the FT trimerization interface restored Env cleavage and syncytium formation to near-wild-type levels. CONCLUSION: The modified transmembrane region was not conducive to trimerization of soluble Envs. However, for HIV-1 Env ectodomains that are minimally modified, membrane-anchored Envs exhibit the most native structures and can be stabilized by appropriately positioned FT domains.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Dobramento de Proteína , Multimerização Proteica , Substituição de Aminoácidos , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica
9.
J Virol ; 88(12): 6542-55, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696475

RESUMO

UNLABELLED: Approaches to prevent human immunodeficiency virus (HIV-1) transmission are urgently needed. Difficulties in eliciting antibodies that bind conserved epitopes exposed on the unliganded conformation of the HIV-1 envelope glycoprotein (Env) trimer represent barriers to vaccine development. During HIV-1 entry, binding of the gp120 Env to the initial receptor, CD4, triggers conformational changes in Env that result in the formation and exposure of the highly conserved gp120 site for interaction with the coreceptors, CCR5 and CXCR4. The DMJ compounds (+)-DMJ-I-228 and (+)-DMJ-II-121 bind gp120 within the conserved Phe 43 cavity near the CD4-binding site, block CD4 binding, and inhibit HIV-1 infection. Here we show that the DMJ compounds sensitize primary HIV-1, including transmitted/founder viruses, to neutralization by monoclonal antibodies directed against CD4-induced (CD4i) epitopes and the V3 region, two gp120 elements involved in coreceptor binding. Importantly, the DMJ compounds rendered primary HIV-1 sensitive to neutralization by antisera elicited by immunization of rabbits with HIV-1 gp120 cores engineered to assume the CD4-bound state. Thus, small molecules like the DMJ compounds may be useful as microbicides to inhibit HIV-1 infection directly and to sensitize primary HIV-1 to neutralization by readily elicited antibodies. IMPORTANCE: Preventing HIV-1 transmission is a priority for global health. Eliciting antibodies that can neutralize many different strains of HIV-1 is difficult, creating problems for the development of a vaccine. We found that certain small-molecule compounds can sensitize HIV-1 to particular antibodies. These antibodies can be elicited in rabbits. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , Antivirais/farmacologia , Antígenos CD4/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , Vacinas contra a AIDS/administração & dosagem , Animais , Antígenos CD4/genética , Linhagem Celular , Feminino , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Humanos , Testes de Neutralização , Coelhos
10.
Bioorg Med Chem Lett ; 24(23): 5439-45, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25454268

RESUMO

With the emergence of drug-resistant strains and the cumulative toxicities associated with current therapies, demand remains for new inhibitors of HIV-1 replication. The inhibition of HIV-1 entry is an attractive, yet underexploited therapeutic approach with implications for salvage and preexposure prophylactic regimens, as well as topical microbicides. Using the combination of a field-derived bioactive conformation template to perform virtual screening and iterative bioisosteric replacements, coupled with in silico predictions of absorption, distribution, metabolism, and excretion, we have identified new leads for HIV-1 entry inhibitors.


Assuntos
Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Descoberta de Drogas , Humanos , Conformação Molecular
11.
J Virol ; 86(16): 8472-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22647699

RESUMO

The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4'-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HIV-1 activity in single- and multiple-round infections but failed to inhibit viral replication in peripheral blood mononuclear cells (PBMCs), was identified. Three analogues of CK026 with reduced size and better drug-like properties were synthesized and assessed. Compound I-XW-053 (4-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid) retained all of the antiviral activity of the parental compound and inhibited the replication of a diverse panel of primary HIV-1 isolates in PBMCs, while displaying no appreciable cytotoxicity. This antiviral activity was specific to HIV-1, as I-XW-053 displayed no effect on the replication of SIV or against a panel of nonretroviruses. Direct interaction of I-XW-053 was quantified with wild-type and mutant CA protein using surface plasmon resonance and isothermal titration calorimetry. Mutation of Ile37 and Arg173, which are required for interaction with compound I-XW-053, crippled the virus at an early, preintegration step. Using quantitative PCR, we demonstrated that treatment with I-XW-053 inhibited HIV-1 reverse transcription in multiple cell types, indirectly pointing to dysfunction in the uncoating process. In summary, we have identified a CA-specific compound that targets and inhibits a novel region in the NTD-NTD interface, affects uncoating, and possesses broad-spectrum anti-HIV-1 activity.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Desenvelopamento do Vírus/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/toxicidade , Calorimetria , Linhagem Celular , Humanos , Testes de Sensibilidade Microbiana , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Reversa/efeitos dos fármacos , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
PLoS Pathog ; 7(6): e1002101, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21731494

RESUMO

Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like") viruses, globally sensitive ("Tier 1") viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of inhibitor/antibody binding to the envelope glycoprotein trimer and by envelope glycoprotein reactivity to the inhibitor/antibody binding event. Quantitative differences in intrinsic reactivity contribute to HIV-1 strain variability in global susceptibility to neutralization and explain the long-observed relationship between increased inhibitor sensitivity and decreased entry requirements for target cell CD4.


Assuntos
HIV-1/patogenicidade , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Variação Genética , Anticorpos Anti-HIV , Infecções por HIV , Humanos , Testes de Neutralização , Receptores Virais/metabolismo
13.
Proc Natl Acad Sci U S A ; 107(32): 14093-8, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660316

RESUMO

The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall alpha-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability.


Assuntos
Fármacos Anti-HIV/química , Inibidores da Fusão de HIV/química , Hidrocarbonetos/química , Peptídeos/farmacocinética , Disponibilidade Biológica , Inibidores da Fusão de HIV/farmacocinética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Hidrocarbonetos/uso terapêutico , Peptídeos/uso terapêutico , Relação Estrutura-Atividade
14.
Pulm Circ ; 12(4): e12165, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36484057

RESUMO

It is unknown whether biological sex influences phenotypes of commercially available human pulmonary artery endothelial cells (HPAECs). Ten lots of commercial HPAECs were used (Lonza Biologics; PromoCell). Five (50%) were confirmed to be genotypically male (SRY+) and five (50%) were confirmed to be female (SRY-). Experiments were conducted between passages five and eight. HPAEC phenotype was confirmed with a panel of cell expression markers. Standard assays for proliferation, migration and tube formation were performed in triplicate with technical replicates, under three treatment conditions (EndoGRO; Sigma-Aldrich). Apoptosis was assessed by exposing cells treated with complete media or low serum media to hypoxic (1% oxygen) or normoxic (20% oxygen) conditions. Laboratory staff was blinded. The median (range) age of male and female donors from whom the HPAECs were derived was 58 (48-60) and 56 (33-67), respectively. Our results suggest decreased proliferation in genotypically female cells compared with male cells (p = 0.09). With increasing donor age, female cells were less proliferative and male cells were more proliferative (p = 0.001). Female cells were significantly more apoptotic than male cells by condition (p = 0.001). Female cells were significantly more migratory than male cells in complete media but less migratory than male cells under vascular endothelial growth factor enriched conditions (p = 0.001). There are subtle sex-based differences in the behavior of HPAECs that depend on donor sex and, less so, age. These differences may undermine rigor and reproducibility. Future studies should define whether biological sex is an important regulator of HPAEC function in health and disease.

15.
PLoS Pathog ; 5(4): e1000360, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19343205

RESUMO

Binding to the CD4 receptor induces conformational changes in the human immunodeficiency virus (HIV-1) gp120 exterior envelope glycoprotein. These changes allow gp120 to bind the coreceptor, either CCR5 or CXCR4, and prime the gp41 transmembrane envelope glycoprotein to mediate virus-cell membrane fusion and virus entry. Soluble forms of CD4 (sCD4) and small-molecule CD4 mimics (here exemplified by JRC-II-191) also induce these conformational changes in the HIV-1 envelope glycoproteins, but typically inhibit HIV-1 entry into CD4-expressing cells. To investigate the mechanism of inhibition, we monitored at high temporal resolution inhibitor-induced changes in the conformation and functional competence of the HIV-1 envelope glycoproteins that immediately follow engagement of the soluble CD4 mimics. Both sCD4 and JRC-II-191 efficiently activated the envelope glycoproteins to mediate infection of cells lacking CD4, in a manner dependent on coreceptor affinity and density. This activated state, however, was transient and was followed by spontaneous and apparently irreversible changes of conformation and by loss of functional competence. The longevity of the activated intermediate depended on temperature and the particular HIV-1 strain, but was indistinguishable for sCD4 and JRC-II-191; by contrast, the activated intermediate induced by cell-surface CD4 was relatively long-lived. The inactivating effects of these activation-based inhibitors predominantly affected cell-free virus, whereas virus that was prebound to the target cell surface was mainly activated, infecting the cells even at high concentrations of the CD4 analogue. These results demonstrate the ability of soluble CD4 mimics to inactivate HIV-1 by prematurely triggering active but transient intermediate states of the envelope glycoproteins. This novel strategy for inhibition may be generally applicable to high-potential-energy viral entry machines that are normally activated by receptor binding.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Antígenos CD4/farmacologia , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Humanos , Mimetismo Molecular , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Temperatura , Ligação Viral
16.
Bioorg Med Chem ; 19(1): 91-101, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21169023

RESUMO

The low-molecular-weight compound JRC-II-191 inhibits infection of HIV-1 by blocking the binding of the HIV-1 envelope glycoprotein gp120 to the CD4 receptor and is therefore an important lead in the development of a potent viral entry inhibitor. Reported here is the use of two orthogonal screening methods, gold docking and ROCS shape-based similarity searching, to identify amine-building blocks that, when conjugated to the core scaffold, yield novel analogs that maintain similar affinity for gp120. Use of this computational approach to expand SAR produced analogs of equal inhibitory activity but with diverse capacity to enhance viral infection. The novel analogs provide additional lead scaffolds for the development of HIV-1 entry inhibitors that employ protein-ligand interactions in the vestibule of gp120 Phe 43 cavity.


Assuntos
Fármacos Anti-HIV/farmacologia , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Desenho de Fármacos , Proteína gp120 do Envelope de HIV/metabolismo , Fusão de Membrana/efeitos dos fármacos , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade
17.
J Virol ; 83(17): 8364-78, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19535453

RESUMO

Binding to the primary receptor CD4 induces conformational changes in the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein that allow binding to the coreceptor (CCR5 or CXCR4) and ultimately trigger viral membrane-cell membrane fusion mediated by the gp41 transmembrane envelope glycoprotein. Here we report the derivation of an HIV-1 gp120 variant, H66N, that confers envelope glycoprotein resistance to temperature extremes. The H66N change decreases the spontaneous sampling of the CD4-bound conformation by the HIV-1 envelope glycoproteins, thus diminishing CD4-independent infection. The H66N change also stabilizes the HIV-1 envelope glycoprotein complex once the CD4-bound state is achieved, decreasing the probability of CD4-induced inactivation and revealing the enhancing effects of soluble CD4 binding on HIV-1 infection. In the CD4-bound conformation, the highly conserved histidine 66 is located between the receptor-binding and gp41-interactive surfaces of gp120. Thus, a single amino acid change in this strategically positioned gp120 inner domain residue influences the propensity of the HIV-1 envelope glycoproteins to negotiate conformational transitions to and from the CD4-bound state.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Ligação Viral , Substituição de Aminoácidos , Linhagem Celular , Humanos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ligação Proteica , Conformação Proteica
18.
Structure ; 16(11): 1689-701, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19000821

RESUMO

Human immunodeficiency virus (HIV-1) interaction with the primary receptor, CD4, induces conformational changes in the viral envelope glycoproteins that allow binding to the CCR5 second receptor and virus entry into the host cell. The small molecule NBD-556 mimics CD4 by binding the gp120 exterior envelope glycoprotein, moderately inhibiting virus entry into CD4-expressing target cells and enhancing CCR5 binding and virus entry into CCR5-expressing cells lacking CD4. Studies of NBD-556 analogs and gp120 mutants suggest that (1) NBD-556 binds within the Phe 43 cavity, a highly conserved, functionally important pocket formed as gp120 assumes the CD4-bound conformation; (2) the NBD-556 phenyl ring projects into the Phe 43 cavity; (3) enhancement of CD4-independent infection by NBD-556 requires the induction of conformational changes in gp120; and (4) increased affinity of NBD-556 analogs for gp120 improves antiviral potency during infection of CD4-expressing cells.


Assuntos
Proteína gp120 do Envelope de HIV/química , HIV-1/fisiologia , Síndrome da Imunodeficiência Adquirida/virologia , Antígenos CD4/química , Antígenos CD4/fisiologia , Calorimetria , Sequência Conservada , HIV-1/química , HIV-1/patogenicidade , Humanos , Modelos Moleculares , Fenilalanina/química , Conformação Proteica , Receptores CXCR4/química , Proteínas Recombinantes/metabolismo , Termodinâmica
19.
Nat Commun ; 9(1): 2363, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915222

RESUMO

The envelope glycoprotein (Env) trimer ((gp120/gp41)3) mediates human immunodeficiency virus (HIV-1) entry into cells. The "closed," antibody-resistant Env trimer is driven to more open conformations by binding the host receptor, CD4. Broadly neutralizing antibodies that recognize conserved elements of the closed Env are potentially protective, but are elicited inefficiently. HIV-1 has evolved multiple mechanisms to evade readily elicited antibodies against more open Env conformations. Small-molecule CD4-mimetic compounds (CD4mc) bind the HIV-1 gp120 Env and promote conformational changes similar to those induced by CD4, exposing conserved Env elements to antibodies. Here, we show that a CD4mc synergizes with antibodies elicited by monomeric HIV-1 gp120 to protect monkeys from multiple high-dose intrarectal challenges with a heterologous simian-human immunodeficiency virus (SHIV). The protective immune response persists for at least six months after vaccination. CD4mc should increase the protective efficacy of any HIV-1 Env vaccine that elicits antibodies against CD4-induced conformations of Env.


Assuntos
Vacinas contra a AIDS/imunologia , Guanidinas/farmacologia , Proteína gp120 do Envelope de HIV/imunologia , Indenos/farmacologia , Lentivirus de Primatas/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Guanidinas/química , Células HEK293 , Humanos , Imunidade Heteróloga , Imunização , Indenos/química , Macaca mulatta
20.
AIDS Res Hum Retroviruses ; 33(5): 428-431, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27846736

RESUMO

Recent studies have linked antibody Fc-mediated effector functions with control of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus infections. Interestingly, the presence of antibodies with potent antibody-dependent cellular cytotoxicity (ADCC) activity in RV144 vaccine trial participants correlated inversely with HIV-1 acquisition risk. These antibodies were recently found to recognize epitopes on the HIV-1 envelope (Env) glycoprotein exposed upon Env-CD4 binding. Accordingly, small-molecule CD4 mimetics (CD4mc) that induce Env to sample the CD4-bound conformation were shown to sensitize HIV-1-infected cells to ADCC mediated by sera from HIV-1-infected individuals. However, it remains unknown whether antibodies elicited through immunization can also mediate CD4mc-induced ADCC. In this study, we tested the capacity of CD4mc to sensitize HIV-1-infected cells to ADCC by sera from Env-vaccinated nonhuman primates using a FACS-based ADCC assay. In parallel, we evaluated the ability of CD4mc to sensitize HIV-1 viral particles to neutralization by sera from these immunized animals. We found that the vaccine-induced antibodies were able to mediate ADCC and viral neutralization in the presence, but not the absence, of CD4mc. Thus, CD4mc are capable of sensitizing HIV-1-infected cells to ADCC and infectious viral particles to neutralization by easy-to-elicit antibodies that are otherwise unable to mediate these activities.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Biomimética , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/virologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Animais , Citometria de Fluxo , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA