Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Insects ; 14(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37233075

RESUMO

The Asian tiger mosquito, Aedes albopictus, is an important vector of arboviruses that cause diseases such as dengue, chikungunya, and zika. The vector is highly invasive and adapted to survive in temperate northern territories outside its native tropical and sub-tropical range. Climate and socio-economic change are expected to facilitate its range expansion and exacerbate the global vector-borne disease burden. To project shifts in the global habitat suitability of the vector, we developed an ensemble machine learning model, incorporating a combination of a Random Forest and XGBoost binary classifiers, trained with a global collection of vector surveillance data and an extensive set of climate and environmental constraints. We demonstrate the reliable performance and wide applicability of the ensemble model in comparison to the known global presence of the vector, and project that suitable habitats will expand globally, most significantly in the northern hemisphere, putting at least an additional billion people at risk of vector-borne diseases by the middle of the 21st century. We project several highly populated areas of the world will be suitable for Ae. albopictus populations, such as the northern parts of the USA, Europe, and India by the end of the century, which highlights the need for coordinated preventive surveillance efforts of potential entry points by local authorities and stakeholders.

2.
Lancet Planet Health ; 7(4): e282-e290, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37019569

RESUMO

BACKGROUND: The Middle East and North Africa (MENA) is one of the regions that is most vulnerable to the negative effects of climate change, yet the potential public health impacts have been underexplored compared to other regions. We aimed to examine one aspect of these impacts, heat-related mortality, by quantifying the current and future burden in the MENA region and identifying the most vulnerable countries. METHODS: We did a health impact assessment using an ensemble of bias-adjusted statistically downscaled Coupled Model Intercomparison Project phase 6 (CMIP6) data based on four Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2·6 [consistent with a 2°C global warming scenario], SSP2-4·5 [medium pathway scenario], SSP3-7·0 [pessimistic scenario], and SSP5-8·5 [high emissions scenario]) and Bayesian inference methods. Assessments were based on apparent temperature-mortality relationships specific to each climate subregion of MENA based on Koppen-Geiger climate type classification, and unique thresholds were characterised for each 50 km grid cell in the region. Future annual heat-related mortality was estimated for the period 2021-2100. Estimates were also presented with population held constant to quantify the contribution of projected demographic changes to the future heat-mortality burden. FINDINGS: The average annual heat-related death rate across all MENA countries is currently 2·1 per 100 000 people. Under the two high emissions scenarios (SSP3-7·0 and SSP5-8·5), most of the MENA region will have experienced substantial warming by the 2060s. Annual heat-related deaths of 123·4 per 100 000 people are projected for MENA by 2100 under a high emissions scenario (SSP5-8·5), although this rate would be reduced by more than 80% (to 20·3 heat-related deaths per 100 000 people per year) if global warming could be limited to 2°C (ie, under the SSP1-2·6 scenario). Large increases are also expected by 2100 under the SSP3-7·0 scenario (89·8 heat-related deaths per 100 000 people per year) due to the high population growth projected under this pathway. Projections in MENA are far higher than previously observed in other regions, with Iran expected to be the most vulnerable country. INTERPRETATION: Stronger climate change mitigation and adaptation policies are needed to avoid these heat-related mortality impacts. Since much of this increase will be driven by population changes, demographic policies and healthy ageing will also be key to successful adaptation. FUNDING: National Institute for Health Research, EU Horizon 2020.


Assuntos
Avaliação do Impacto na Saúde , Temperatura Alta , Humanos , Teorema de Bayes , Oriente Médio , África do Norte
3.
Artigo em Inglês | MEDLINE | ID: mdl-38223852

RESUMO

Visceral and cutaneous leishmaniases are important public health concerns in Cyprus. Although the diseases, historically prevalent on the island, were nearly eradicated by 1996, an increase in frequency and geographical spread has recently been recorded. Upward trends in leishmaniasis prevalence have largely been attributed to environmental changes that amplify the abundance and activity of its vector, the phlebotomine sand flies. Here, we performed an extensive field study across the island to map the sand fly fauna and compared the presence and distribution of the species found with historical records. We mapped the habitat preferences of Phlebotomus papatasi and P. tobbi, two medically important species, and predicted the seasonal abundance of P. papatasi at unprecedented spatiotemporal resolution using a climate-sensitive population dynamics model driven by high-resolution meteorological forecasting. Our compendium holds a record of 18 species and the locations of a subset, including those of potential public and veterinary health concern. We confirmed that P. papatasi is widespread, especially in densely urbanized areas, and predicted that its abundance uniformly peaks across the island at the end of summer. We identified potential hotspots of P. papatasi activity even after this peak. Our results form a foundation to inform public health planning and contribute to the development of effective, efficient, and environmentally sensitive strategies to control sand fly populations and prevent sand fly-borne diseases.

4.
Air Qual Atmos Health ; 12(1): 73-86, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30687413

RESUMO

We evaluate air quality modeling over the East Mediterranean using the benchmarking methodology developed in the framework of the Forum for Air Quality Modelling in Europe (FAIRMODE). FAIRMODE aims to provide a harmonized approach of model evaluation for regulatory purposes. We test the methodology by assessing the performance of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) against ground-based air quality observations over Cyprus, a member state of the European Union. Two nested domains are used (at 50- and 10-km horizontal grid spacing) with the comparison performed over the innermost domain. We consider performance indicators reflecting regulations for air quality standards (maximum daily 8-hourly mean ozone, hourly nitrogen dioxide, and daily fine particulate matter concentrations). The WRF-Chem model is found to satisfy the proposed performance objectives regarding ozone and NO2, though it underestimates the latter in urban areas possibly due to uncertainties in emission inventories. Fine particulate matter is well represented by the model, except on days with strong influence from natural sources, highlighting the necessity for fine-tuning dust mobilization and transport in the region. The objectives are fulfilled even though discrepancies exist between model and observations. Our results indicate the need for more stringent performance criteria at relatively low concentrations. Overall, we find that the methodology provides in-depth information and relevant statistical metrics to guide air quality and model assessments for monitoring compliance with the EU Air Quality Directives and other guidelines to limit the impact of air pollution on human health and ecosystems.

5.
Sci Rep ; 9(1): 2469, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792449

RESUMO

Sand flies are responsible for the transmission of leishmaniasis, a neglected tropical disease claiming more than 50,000 lives annually. Leishmaniasis is an emerging health risk in tropical and Mediterranean countries as well as temperate regions in North America and Europe. There is an increasing demand for predicting population dynamics and spreading of sand flies to support management and control, yet phenotypic diversity and complex environmental dependence hamper model development. Here, we present the principles for developing predictive species-specific population dynamics models for important disease vectors. Based on these principles, we developed a sand fly population dynamics model with a generic structure where model parameters are inferred using a surveillance dataset collected from Greece and Cyprus. The model incorporates distinct life stages and explicit dependence on a carefully selected set of environmental variables. The model successfully replicates the observations and demonstrates high predictive capacity on the validation dataset from Turkey. The surveillance datasets inform about biological processes, even in the absence of laboratory experiments. Our findings suggest that the methodology can be applied to other vector species to predict abundance, control dispersion, and help to manage the global burden of vector-borne diseases.


Assuntos
Leishmaniose/transmissão , Vigilância da População/métodos , Psychodidae/crescimento & desenvolvimento , Animais , Teorema de Bayes , Clima , Chipre/epidemiologia , Vetores de Doenças , Grécia/epidemiologia , Leishmaniose/epidemiologia , Dinâmica Populacional , Psychodidae/parasitologia , Processos Estocásticos , Turquia
6.
PLoS One ; 12(3): e0174293, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28362820

RESUMO

Chikungunya is a viral disease transmitted to humans primarily via the bites of infected Aedes mosquitoes. The virus caused a major epidemic in the Indian Ocean in 2004, affecting millions of inhabitants, while cases have also been observed in Europe since 2007. We developed a stochastic spatiotemporal model of Aedes albopictus-borne chikungunya transmission based on our recently developed environmentally-driven vector population dynamics model. We designed an integrated modelling framework incorporating large-scale gridded climate datasets to investigate disease outbreaks on Reunion Island and in Italy. We performed Bayesian parameter inference on the surveillance data, and investigated the validity and applicability of the underlying biological assumptions. The model successfully represents the outbreak and measures of containment in Italy, suggesting wider applicability in Europe. In its current configuration, the model implies two different viral strains, thus two different outbreaks, for the two-stage Reunion Island epidemic. Characterisation of the posterior distributions indicates a possible relationship between the second larger outbreak on Reunion Island and the Italian outbreak. The model suggests that vector control measures, with different modes of operation, are most effective when applied in combination: adult vector intervention has a high impact but is short-lived, larval intervention has a low impact but is long-lasting, and quarantining infected territories, if applied strictly, is effective in preventing large epidemics. We present a novel approach in analysing chikungunya outbreaks globally using a single environmentally-driven mathematical model. Our study represents a significant step towards developing a globally applicable Ae. albopictus-borne chikungunya transmission model, and introduces a guideline for extending such models to other vector-borne diseases.


Assuntos
Aedes/virologia , Febre de Chikungunya/transmissão , Vírus Chikungunya/patogenicidade , Insetos Vetores/virologia , Modelos Teóricos , Animais , Teorema de Bayes , Febre de Chikungunya/virologia , Surtos de Doenças
7.
PLoS One ; 11(2): e0149282, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26871447

RESUMO

The Asian tiger mosquito, Aedes albopictus, is a highly invasive vector species. It is a proven vector of dengue and chikungunya viruses, with the potential to host a further 24 arboviruses. It has recently expanded its geographical range, threatening many countries in the Middle East, Mediterranean, Europe and North America. Here, we investigate the theoretical limitations of its range expansion by developing an environmentally-driven mathematical model of its population dynamics. We focus on the temperate strain of Ae. albopictus and compile a comprehensive literature-based database of physiological parameters. As a novel approach, we link its population dynamics to globally-available environmental datasets by performing inference on all parameters. We adopt a Bayesian approach using experimental data as prior knowledge and the surveillance dataset of Emilia-Romagna, Italy, as evidence. The model accounts for temperature, precipitation, human population density and photoperiod as the main environmental drivers, and, in addition, incorporates the mechanism of diapause and a simple breeding site model. The model demonstrates high predictive skill over the reference region and beyond, confirming most of the current reports of vector presence in Europe. One of the main hypotheses derived from the model is the survival of Ae. albopictus populations through harsh winter conditions. The model, constrained by the environmental datasets, requires that either diapausing eggs or adult vectors have increased cold resistance. The model also suggests that temperature and photoperiod control diapause initiation and termination differentially. We demonstrate that it is possible to account for unobserved properties and constraints, such as differences between laboratory and field conditions, to derive reliable inferences on the environmental dependence of Ae. albopictus populations.


Assuntos
Aedes/fisiologia , Clima , Ecossistema , Insetos Vetores/fisiologia , Aedes/virologia , Distribuição Animal , Animais , Teorema de Bayes , Febre de Chikungunya/transmissão , Vírus Chikungunya/fisiologia , Simulação por Computador , Dengue/transmissão , Vírus da Dengue/fisiologia , Diapausa de Inseto , Europa (Continente) , Humanos , Insetos Vetores/virologia , Oriente Médio , Modelos Biológicos , Dinâmica Populacional , Temperatura
8.
Pathog Glob Health ; 107(5): 224-41, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23916332

RESUMO

Aedes albopictus is a vector of dengue and chikungunya viruses in the field, along with around 24 additional arboviruses under laboratory conditions. As an invasive mosquito species, Ae. albopictus has been expanding in geographical range over the past 20 years, although the poleward extent of mosquito populations is limited by winter temperatures. Nonetheless, population densities depend on environmental conditions and since global climate change projections indicate increasing temperatures and altered patterns of rainfall, geographic distributions of previously tropical mosquito species may change. Although mathematical models can provide explanatory insight into observed patterns of disease prevalence in terms of epidemiological and entomological processes, understanding how environmental variables affect transmission is possible only with reliable model parameterisation, which, in turn, is obtained only through a thorough understanding of the relationship between mosquito biology and environmental variables. Thus, in order to assess the impact of climate change on mosquito population distribution and regions threatened by vector-borne disease, a detailed understanding (through a synthesis of current knowledge) of the relationship between climate, mosquito biology, and disease transmission is required, but this process has not yet been undertaken for Ae. albopictus. In this review, the impact of temperature, rainfall, and relative humidity on Ae. albopictus development and survival are considered. Existing Ae. albopictus populations across Europe are mapped with current climatic conditions, considering whether estimates of climatic cutoffs for Ae. albopictus are accurate, and suggesting that environmental thresholds must be calibrated according to the scale and resolution of climate model outputs and mosquito presence data.


Assuntos
Aedes/crescimento & desenvolvimento , Aedes/parasitologia , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/transmissão , Vetores de Doenças , Animais , Febre de Chikungunya , Clima , Meio Ambiente , Métodos Epidemiológicos , Humanos , Modelos Estatísticos , Filogeografia , Prevalência , Topografia Médica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA