Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artif Organs ; 42(4): 365-376, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28940550

RESUMO

The objective of this study was to evaluate the hemodynamic performance and gaseous microemboli (GME) handling ability of a simulated neonatal extracorporeal life support (ECLS) circuit with an in-line continuous renal replacement therapy (CRRT) device. The circuit consisted of a Maquet RotaFlow centrifugal pump or HL20 roller pump, Quadrox-iD Pediatric diffusion membrane oxygenator, 8-Fr arterial cannula, 10-Fr venous cannula, and Better-Bladder (BB) with "Y" connector. A second Quadrox-I Adult oxygenator was added postarterial cannula for GME experiments. The circuit and pseudo-patient were primed with lactated Ringer's solution and packed human red blood cells (hematocrit 40%). All hemodynamic trials were conducted at ECLS flow rates ranging from 200 to 600 mL/min and CRRT flow rate of 75 mL/min at 36°C. Real-time pressure and flow data were recorded with a data acquisition system and GME were detected and characterized using the Emboli Detection and Classification Quantifier System. CRRT was added at distinct locations such that blood entered CRRT between the pump and oxygenator (A), recirculated through the pump (B), or bypassed the pump (C). With the centrifugal pump, all CRRT positions had similar flow rates, mean arterial pressure (MAP), and total hemodynamic energy (THE) loss. With the roller pump, C demonstrated increased flow rates (293.2-686.4 mL/min) and increased MAP (59.4-75.5 mm Hg) (P < 0.01); B had decreased flow rates (129.7-529.7 mL/min), and MAP (34.2-45.0 mm Hg) (P < 0.01); A maintained the same when compared to without CRRT. At 600 mL/min C lost more THE (81.4%) (P < 0.01) with a larger pressure drop across the oxygenator (95.6 mm Hg) (P < 0.01) than without CRRT (78.3%; 49.1 mm Hg) (P < 0.01). C also demonstrated a poorer GME handling ability using the roller pump, with 87.1% volume and 17.8% count reduction across the circuit, compared to A and B with 99.9% volume and 65.8-72.3% count reduction. These findings suggest that, in contrast to A and B, adding CRRT at position C is unsafe and not advised for clinical use.


Assuntos
Embolia Aérea/prevenção & controle , Oxigenação por Membrana Extracorpórea/métodos , Sistemas de Manutenção da Vida/instrumentação , Modelos Cardiovasculares , Diálise Renal/métodos , Terapia de Substituição Renal/métodos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/instrumentação , Gases , Hemofiltração/efeitos adversos , Hemofiltração/instrumentação , Hemofiltração/métodos , Hemorreologia , Humanos , Recém-Nascido , Oxigenadores de Membrana , Diálise Renal/efeitos adversos , Diálise Renal/instrumentação , Terapia de Substituição Renal/efeitos adversos , Terapia de Substituição Renal/instrumentação
2.
Artif Organs ; 42(2): 155-165, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28621839

RESUMO

As it is common for patients treated with extracorporeal life support (ECLS) to subsequently require continuous renal replacement therapy (CRRT), and neonatal patients encounter limitations due to lack of access points, inclusion of CRRT in the ECLS circuit could provide advanced treatment for this population. The objective of this study was to evaluate an alternative neonatal ECLS circuit containing either a Maquet RotaFlow centrifugal pump or Maquet HL20 roller pump with one of seven configurations of CRRT using the Prismaflex 2000 System. All ECLS circuit setups included a Quadrox-iD Pediatric diffusion membrane oxygenator, a Better Bladder, an 8-Fr arterial cannula, a 10-Fr venous cannula, and 6 feet of »-inch diameter arterial and venous tubing. The circuit was primed with lactated Ringer's solution and packed human red blood cells resulting in a total priming volume of 700 mL for both the circuit and the 3-kg pseudopatient. Hemodynamic data were recorded for ECLS flow rates of 200, 400, and 600 mL/min and a CRRT flow rate of 50 mL/min. When a centrifugal pump is used, the hemodynamic performance of any combined ECLS and CRRT circuit was not significantly different than that of the circuit without CRRT, thus any configuration could potentially be used. However, introduction of CRRT to a circuit containing a roller pump does affect performance properties for some CRRT positions. The circuits with CRRT positions B and G demonstrated decreased total hemodynamic energy (THE) levels at the post-arterial cannula site, while positions D and E demonstrated increased post-arterial cannula THE levels compared to the circuit without CRRT. CRRT positions A, C, and F did not have significant changes with respect to pre-arterial cannula flow and THE levels, compared to the circuit without CRRT. Considering hemodynamic performance, for neonatal combined extracorporeal membrane oxygenation (ECMO) and CRRT circuits with both blood pumps, we recommend the use of CRRT position A due to its hemodynamic similarities to the ECMO circuit without CRRT.


Assuntos
Simulação por Computador , Oxigenação por Membrana Extracorpórea/instrumentação , Hemodinâmica , Modelos Cardiovasculares , Terapia de Substituição Renal/instrumentação , Desenho de Equipamento , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Recém-Nascido , Terapia de Substituição Renal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA