Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(29): 39742-39756, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33759104

RESUMO

The safety of beachgoers and swimmers is determined by the presence or absence of microbial contaminants and cyanobacterial toxins in the water. This study compared the assessment of bathing waters according to the Bathing Water Directive, which is based on the concentration of fecal contaminants, with some modifications, and a new method based on the concentration of chlorophyll-a, which corresponds to the World Health Organization (WHO) guidelines used for determining cyanobacterial density in the water posing threat to people health. The results obtained from the method based on chlorophyll-a concentration clearly showed that the number of bathing waters in Poland with sufficient and insufficient quality were higher in 2018 and 2019, compared to the method based on microbial contamination. The closing of bathing waters based only on the visual confirmation of cyanobacterial blooms might not be enough to prevent the threat to swimmers' health. The multivariate analyses applied in this study seem to confirm that chlorophyll-a concentration with associated cyanobacterial density might serve as an additional parameter for assessing the quality of bathing waters, and in the case of small water reservoirs, might indirectly inform about the conditions and changes in water ecosystems.


Assuntos
Cianobactérias , Lagos , Ecossistema , Humanos , Polônia , Qualidade da Água
2.
PeerJ ; 9: e12584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917426

RESUMO

BACKGROUND: This study aims to compare variation in a range of aquatic macrophyte species leaf traits into three carbon acquisition groups: HCO3 -, free CO2 and atmospheric CO2. METHODS: The leaf functional traits were measured for 30 species from 30 softwater lakes. Macrophyte species were classified into (1) free CO2, (2) atmospheric CO2 and (3) bicarbonate HCO3 - groups. In each lake we collected water samples and measured eight environmental variables: depth, Secchi depth, photosynthetically active radiation (PAR), pH of water, conductivity, calcium concentration, total nitrogen and total phosphorus. In this study we applied the RLQ analysis to investigate the relationships between species functional traits (Q) and their relationship with environmental variables (R) constrained by species abundance (L). RESULTS: The results showed that: (1) Aquatic macrophytes exhibited high leaf trait variations as a response to different inorganic carbon acquisition; (2) Traits of leaves refer to the acquisition of carbon for photosynthesis and serve to maximise this process; (3) In the wide softwater habitat, macrophyte species exhibited an extreme range of leaf economic spectrum (leaf area, leaf dry weight and specific leaf area) and wide range of shape trait expressed as circularity; (4) Macrophyte leaf traits are the result of adaptation to carbon acquisition in ambient environment.

3.
Sci Total Environ ; 785: 147276, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957594

RESUMO

Ground- and surface-water-fed peatlands (i.e., fens) of temperate Europe face high anthropogenic nutrient loads from atmospheric deposition, agricultural catchment areas, and from peat decomposition, if drained. As a result, nitrogen loads may exceed a fen's natural nutrient removal capacity, leading to increased eutrophication of adjacent water bodies. Therefore, it is important to address possible means to decrease a fen's nutrient load, including nutrient uptake by fen plants. To assess how much fen plants can contribute to nutrient removal by uptake, nutrient stocks of above- and below-ground biomass need to be quantified. Therefore, we investigated nitrogen, phosphorous, and potassium uptake capacities of sedges (Carex species), which are common dominants in fen plant communities. We grew specimens of five Carex species with varying preferences in nutrient availability under controlled, different nutrient levels. We show that Carex above-ground biomass harvest can remove up to one third of a system's total nitrogen even at high loads of about 40 g nitrogen m-2. Species-specific differences in biomass production, rather than preferences in nutrient availability under natural conditions, were drivers of standing nutrient stocks: Highly productive species, i.e., C. acutiformis and C. rostrata, had highest nutrient standing stocks across all nutrient levels. Amounts of nutrients stored in shoots increased almost linearly with increasing nutrient levels, whereas below-ground nutrient stocks species-specifically increased, saturated, or decreased, with increasing nutrient levels. As a rough estimate, depending on the species, 6-16 cycles of annual above-ground harvest would suffice to decrease nitrogen concentrations from the highest to the lowest level used in this study. Overall, our results indicate that Carex biomass harvest can be an efficient means to counteract anthropogenic nitrogen eutrophication in fens.


Assuntos
Carex (Planta) , Biomassa , Ecossistema , Europa (Continente) , Eutrofização , Nitrogênio/análise , Nutrientes , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA