Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 37(15): 3114-6, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22859103

RESUMO

We demonstrate a novel position-resolved resonance trimming strategy for silicon ring resonators. Ring resonators are covered with a chromophore-doped guest host polymer cladding. Illumination of the polymer cladding with high-energy electrons causes a bleaching of the chromophore molecules. Bleaching of the chromophores induces a reduction of the polymer refractive index, which can be used to trim the resonance frequency of the ring resonators. A maximum refractive index change of 0.06 and a TM polarization resonance shift of 16.4 nm have been measured. A Q factor of 20,000 before bleaching remains unaltered after the electron beam exposure process.

2.
Opt Lett ; 35(16): 2753-5, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20717446

RESUMO

In this Letter we demonstrate broadband electro-optic modulation with frequencies of up to 40 GHz in slotted photonic crystal waveguides based on silicon-on-insulator substrates covered and infiltrated with a nonlinear optical polymer. Two-dimensional photonic crystal waveguides in silicon enable integrated optical devices with an extremely small geometric footprint on the scale of micrometers. The slotted waveguide design optimizes the overlap of the optical and electric fields in the second-order nonlinear optical medium and, hence, the interaction of the optical and electric waves.

3.
Sci Rep ; 4: 4126, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24535224

RESUMO

Resonant electromagnetic properties of nanoparticles fabricated from high-index semiconductor or dielectric materials are very promising for the realization of novel nanoantennas and metamaterials. In this paper we study optical resonances of Si nanocylinders located on a silica substrate. Multipole analysis of the experimental scattering spectra, based on the decomposed discrete dipole approximation, confirms resonant excitation of electric and magnetic dipole modes in the Si nanocylinders. Influences of light polarization and incident angle on the scattering properties of the nanocylinders are studied. It is shown that the dependence of resonant excitation of the electric and magnetic modes in the nanocylinders on incident angle and polarization of light allows controlling and manipulating the scattered light in this system. The demonstrated properties of Si nanocylinders can be used for the realization of dielectric metasurfaces with different functional optical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA