Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Bull Environ Contam Toxicol ; 112(4): 53, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565770

RESUMO

The objectives of this study were to: (1) characterize the exposure of aquatic ecosystems in Southern Ontario, Canada to pesticides between 2002 and 2016 by constructing environmental exposure distributions (EEDs), including censored data; and (2) predict the probability of exceeding acute regulatory guidelines. Surface water samples were collected over a 15-year period by Environment and Climate Change Canada. The dataset contained 167 compounds, sampled across 114 sites, with a total of 2,213 samples. There were 67,920 total observations of which 55,058 were non-detects (81%), and 12,862 detects (19%). The most commonly detected compound was atrazine, with a maximum concentration of 18,600 ngL- 1 and ~ 4% chance of exceeding an acute guideline (1,000 ngL- 1) in rivers and streams. Using Southern Ontario as a case study, this study provides insight into the risk that pesticides pose to aquatic ecosystems and the utility of EEDs that include censored data for the purpose of risk assessment.


Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Ontário , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Rios , Probabilidade , Medição de Risco
2.
Arch Environ Contam Toxicol ; 85(1): 1-12, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37233741

RESUMO

The elevated use of salt as a de-icing agent on roads in Canada is causing an increase in the chloride concentration of freshwater ecosystems. Freshwater Unionid mussels are a group of organisms that are sensitive to increases in chloride levels. Unionids have greater diversity in North America than anywhere else on Earth, but they are also one of the most imperiled groups of organisms. This underscores the importance of understanding the effect that increasing salt exposure has on these threatened species. There are more data on the acute toxicity of chloride to Unionids than on chronic toxicity. This study investigated the effect of chronic sodium chloride exposure on the survival and filtering activity of two Unionid species (Eurynia dilatata, and Lasmigona costata) and assessed the effect on the metabolome in L. costata hemolymph. The concentration causing mortality after 28 days of exposure was similar for E. dilatata (1893 mg Cl-/L) and L. costata (1903 mg Cl-/L). Significant changes in the metabolome of the L. costata hemolymph were observed for mussels exposed to non-lethal concentrations. For example, several phosphatidylethanolamines, several hydroxyeicosatetraenoic acids, pyropheophorbide-a, and alpha-linolenic acid were significantly upregulated in the hemolymph of mussels exposed to 1000 mg Cl-/L for 28 days. While no mortality occurred in the treatment, elevated metabolites in the hemolymph are an indicator of stress.


Assuntos
Bivalves , Unionidae , Poluentes Químicos da Água , Animais , Cloreto de Sódio/toxicidade , Cloretos , Ecossistema , Poluentes Químicos da Água/análise , Bivalves/metabolismo , Cloreto de Sódio na Dieta
3.
Arch Environ Contam Toxicol ; 82(2): 239-254, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388842

RESUMO

The widespread use of road salt for winter road maintenance has led to an increase in the salinity of surface water in many seasonally cold areas. Freshwater mussels have a heightened sensitivity to salt, which is a concern, because many Canadian mussel species at risk have ranges limited to southern Ontario, Canada's most road-dense region. This study examined the effect of winter road runoff on freshwater mussels. The impact of two bridges that span mussel habitat in the Thames River watershed (Ontario, Canada), the second most species-rich watershed for mussels in Canada, were studied. During a winter melt event, bridge runoff, as well as creek surface water surrounding the bridges were collected. Chloride concentrations in samples from bridge deck and tile drains varied (99-8250 mg/L). In general, survival of Lampsilis fasciola glochidia exposed to those samples reflected chloride levels (e.g. 84% at 99 mg/L; 0% at 8250 mg/L), although potassium (60 mg/L) may have at least contributed to toxicity in one sample. Serial dilution exposures with the two most toxic runoff samples revealed 48-h glochidia EC50s of 44% (McGregor Creek Tile Drain) and 26% (Baptiste Creek Deck Drain). During the melt event, the chloride concentrations in creek surface waters downstream of the bridges ranged from 69 to 179 mg Cl-/L; effects on glochidia (viability 77-91%) exposed to those waters was minimal. There were no live mussels surrounding one bridge (Baptiste Creek), likely due to poor habitat. At the other targeted bridge (McGregor Creek), fewer mussels were found close (< 100 m up- or downstream) to the bridge than further (> 200 m) away. However, other contributing factors, including agriculture, were present at both study areas.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Água Doce , Laboratórios , Ontário , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Rev Environ Contam Toxicol ; 259: 171-231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34625837

RESUMO

Pesticides can enter aquatic environments via direct application, via overspray or drift during application, or by runoff or leaching from fields during rain events, where they can have unintended effects on non-target aquatic biota. As such, Fisheries and Oceans Canada identified a need to prioritize current-use pesticides based on potential risks towards fish, their prey species, and habitats in Canada. A literature review was conducted to: (1) Identify current-use pesticides of concern for Canadian marine and freshwater environments based on use and environmental presence in Canada, (2) Outline current knowledge on the biological effects of the pesticides of concern, and (3) Identify general data gaps specific to biological effects of pesticides on aquatic species. Prioritization was based upon recent sales data, measured concentrations in Canadian aquatic environments between 2000 and 2020, and inherent toxicity as represented by aquatic guideline values. Prioritization identified 55 pesticides for further research nationally. Based on rank, a sub-group of seven were chosen as the top-priority pesticides, including three herbicides (atrazine, diquat, and S-metolachlor), three insecticides (chlorpyrifos, clothianidin, and permethrin), and one fungicide (chlorothalonil). A number of knowledge gaps became apparent through this process, including gaps in our understanding of sub-lethal toxicity, environmental fate, species sensitivity distributions, and/or surface water concentrations for each of the active ingredients reviewed. More generally, we identified a need for more baseline fish and fish habitat data, ongoing environmental monitoring, development of marine and sediment-toxicity benchmarks, improved study design including sufficiently low method detection limits, and collaboration around accessible data reporting and management.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Canadá , Ecossistema , Monitoramento Ambiental , Praguicidas/análise , Praguicidas/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Rev Environ Contam Toxicol ; 255: 129-205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104986

RESUMO

The chemical and biological properties of glyphosate are key to understanding its fate in the environment and potential risks to non-target organisms. Glyphosate is polar and water soluble and therefore does not bioaccumulate, biomagnify, or accumulate to high levels in the environment. It sorbs strongly to particles in soil and sediments and this reduces bioavailability so that exposures to non-target organisms in the environment are acute and decrease with half-lives in the order of hours to a few days. The target site for glyphosate is not known to be expressed in animals, which reduces the probability of toxicity and small risks. Technical glyphosate (acid or salts) is of low to moderate toxicity; however, when mixed with some formulants such as polyoxyethylene amines (POEAs), toxicity to aquatic animals increases about 15-fold on average. However, glyphosate and the formulants have different fates in the environment and they do not necessarily co-occur. Therefore, toxicity tests on formulated products in scenarios where they would not be used are unrealistic and of limited use for assessment of risk. Concentrations of glyphosate in surface water are generally low with minimal risk to aquatic organisms, including plants. Toxicity and risks to non-target terrestrial organisms other than plants treated directly are low and risks to terrestrial invertebrates and microbial processes in soil are very small. Formulations containing POEAs are not labeled for use over water but, because POEA rapidly partitions into sediment, risks to aquatic organisms from accidental over-sprays are reduced in shallow water bodies. We conclude that use of formulations of glyphosate under good agricultural practices presents a de minimis risk of direct and indirect adverse effects in non-target organisms.


Assuntos
Herbicidas , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Ecotoxicologia , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/análise , Herbicidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Glifosato
6.
Ecotoxicol Environ Saf ; 163: 165-171, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30053586

RESUMO

The implementation of ecologically relevant sub-lethal endpoints in toxicity testing with freshwater mussels can provide valuable information during risk assessment, especially since these organisms are often exposed to low levels of contaminants. This study examined how to optimize quantifying the filtering capacity or clearance rate (CR) of mussels after exposure to a reference toxicant, sodium chloride (NaCl). CR was defined as the number of algal cells an individual mussel can remove from the overlying water by filtration over time and was determined using spectrophotometric absorbance and direct microscopic examination. Optimization included consideration of the following factors: concentration of algae mixture at test initiation, duration of CR assay, and statistical power. Experimental vessels contained either juvenile (ten, ~ 4 months old) or adult (one, ~ 2.5 years old) Lampsilis siliquoidea. To detect a 10% change in filtering capacity, the optimized adult CR assay was run for 48 h with 2.7 × 107 cells/mL of algae added at test initiation and a minimum of 6 replicates per treatment. The optimized juvenile mussel CR assay was run for 48 h with 1.77 × 107 cells/mL of algae added at test initiation; however, 13 replicates would be required to detect a 10% change to satisfy each method. To reduce the number of juvenile mussels used in testing, a minimum of 4 replicates per treatment was recommended to detect a 25% change in CR. After exposure to a reference toxicant (NaCl), EC50s from the optimized CR assay were compared to two other mussel toxicity endpoints: survival and burial (ability of mussels to bury in clean sand). CR by direct microscopic examination was slightly more sensitive than survival and burial in juveniles and only slightly more sensitive than survival in adults. No significant differences (p > 0.05) were detected between the EC/LC50 values determined from CR and the less labour-intensive survival and burial endpoints. The present study suggests the CR for juvenile and adult L. siliquoidea remained largely unaffected in mussels that survived a 7-day NaCl exposure.


Assuntos
Cloreto de Sódio/toxicidade , Testes de Toxicidade/métodos , Unionidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Água Doce , Unionidae/metabolismo
8.
Ecotoxicol Environ Saf ; 132: 250-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27340884

RESUMO

The acute toxicity of herbicides to algae is commonly assessed under conditions (e.g., light intensity, water temperature, concentration of nutrients, pH) prescribed by standard test protocols. However, the observed toxicity may vary with changes in one or more of these parameters. This study examined variation in toxicity of the herbicide atrazine to a representative green algal species Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) with changes in light intensity, water temperature, concentrations of nutrients or combinations of these three parameters. Conditions were chosen that could be representative of the intensive corn growing Midwestern region of the United States of America where atrazine is used extensively. Varying light intensity (4-58µmol/m(2)s) resulted in no observable trend in 96-h EC50 values for growth rate. EC50 values for PSII yield generally increased with decreasing light intensity but not significantly in all cases. The 96-h EC50 values for growth rate decreased with decreases in temperature (20-5°C) from standard conditions (25°C), but EC50 values for PSII yield at lower temperatures were not significantly different from standard conditions. Finally, there was no clear trend in 96-h EC50 values for both endpoints with increases in nitrogen (4.1-20mg/L) and phosphorus (0.24-1.2mg/L). The 96-h EC50 values for both endpoints under combinations of conditions mimicking aquatic systems in the Midwestern U.S. were not significantly different from EC50 values generated under standard test conditions. This combination of decreased light intensity and temperature and increased nutrients relative to standard conditions does not appear to significantly affect the observed toxicity of atrazine to R. subcapitata. For atrazine specifically, and for perhaps other herbicides, this means current laboratory protocols are useful for extrapolating to effects on algae under realistic environmental conditions.


Assuntos
Atrazina/toxicidade , Clorófitas/efeitos dos fármacos , Herbicidas/toxicidade , Luz , Temperatura , Poluentes Químicos da Água/toxicidade , Clorófitas/efeitos da radiação , Medição de Risco
9.
Ecotoxicol Environ Saf ; 118: 204-216, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957082

RESUMO

Lotic systems in agriculturally intensive watersheds can experience short-term pulsed exposures of pesticides as a result of runoff associated with rainfall events following field applications. Of special interest are herbicides that could potentially impair communities of primary producers, such as those associated with periphyton. Therefore, this study examined agroecosystem-derived lotic periphyton to assess (1) variation in community sensitivity to, and ability to recover from, acute (48h) exposure to the photosystem II (PSII)-inhibiting herbicide atrazine across sites and time, and (2) attempt to determine the variables (e.g., community structure, hydrology, water quality measures) that were predictive for observed differences in sensitivity and recovery. Periphyton were sampled from six streams in the Midwestern U.S. on four different dates in 2012 (April to August). Field-derived periphyton were exposed in the laboratory to concentrations of atrazine ranging from 10 to 320µg/L for 48h, followed by untreated media for evaluation of recovery for 48h. Effective quantum yield of PSII was measured after 24h and 48h exposure and 24h and 48h after replacement of media. Inhibition of PSII EC50 values ranged from 53 to >320µg/L. The majority of periphyton samples (16 out of 22) exposed to atrazine up to 320µg/L recovered completely by 48h after replacement of media. Percent inhibition of effective quantum yield of PSII in periphyton (6 of 22 samples) exposed to 320µg/L atrazine that were significantly lower than controls after 48h ranged from 2% to 24%. No distinct spatial or temporal trends in sensitivity and recovery potential were observed over the course of the study. Conditional inference forest analysis and variation partitioning were used to investigate potential associations between periphyton sensitivity to and ability to recover from exposure to atrazine. Although certain environmental variables (i.e., proximity of high flow/velocity events and dissolved solutes) were significantly associated with sensitivity to atrazine, recovery was not significantly associated with any variables, which is predicted by the rapid reversible binding at PSII. Consistent and rapid recovery of effective quantum yield of PSII across sites and sampling dates indicates that acute exposure to atrazine is unlikely to adversely affect function of these communities in their current state in intensive agroecosystems.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biota , Meio-Oeste dos Estados Unidos , Complexo de Proteína do Fotossistema II/metabolismo , Rios/química , Estações do Ano , Análise Espacial
10.
Bull Environ Contam Toxicol ; 95(2): 150-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26067703

RESUMO

In agricultural catchments, aquatic ecosystems can experience a pulse exposure to pesticides. Following such exposure, non-target organisms that are not extirpated may recover. This paper investigates the potential of two duckweed species (Lemna minor and Lemna gibba) to recover from a 7-day exposure to different concentrations (0.4-208 µg L(-1)) of the herbicide diuron. There was significant inhibition in the growth and biomass after the initial 7-day exposure (e.g. frond number EC50=59.2 and 52.2 µg L(-1) for L. minor and L. gibba, respectively). Following transfer to clean media, recovery (the highest concentration yielding no significant difference in the effect endpoint from the control) was observed for all effects endpoints at concentrations ranging 60-111 µg L(-1) for L. minor and 60-208 µg L(-1) for L. gibba. These results suggest that recovery is possible for primary producers at environmentally relevant concentrations considered significant in ecological risk assessment.


Assuntos
Araceae/efeitos dos fármacos , Diurona/toxicidade , Herbicidas/toxicidade , Araceae/crescimento & desenvolvimento , Biomassa , Poluentes Químicos da Água
11.
Environ Sci Technol ; 48(19): 11397-404, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25207852

RESUMO

Biosolids contain a variety of pharmaceuticals and personal care products (PPCPs). Studies have observed the uptake of PPCPs into plants grown in biosolids-amended soils. This study examined the ability of Dynamic Plant Uptake (DPU) model and Biosolids-amended Soil Level IV (BASL4) model to predict the concentration of eight PPCPs in the tissue of plants grown in biosolids-amended soil under a number of exposure scenarios. Concentrations in edible tissue predicted by the models were compared to concentrations reported in the literature by calculating estimated human daily intake values for both sets of data and comparing them to an acceptable daily intake value. The equilibrium partitioning (EqP) portion of BASL4 overpredicted the concentrations of triclosan, triclocarban, and miconazole in root and shoot tissue by two to three orders of magnitude, while the dynamic carrot root (DCR) portion overpredicted by a single order of magnitude. DPU predicted concentrations of triclosan, triclocarban, miconazole, carbamazepine, and diphenhydramine in plant tissues that were within an order of magnitude of concentrations reported in the literature. The study also found that more empirical data are needed on the uptake of cimetidine, fluoxetine, and gemfibrozil, and other ionizable PPCPs, to confirm the utility of both models. All hazard quotient values calculated from literature data were below 1, with 95.7% of hazard quotient values being below 0.1, indicating that consumption of the chosen PPCPs in plant tissue poses de minimus risk to human health.


Assuntos
Cosméticos/metabolismo , Produtos Agrícolas/metabolismo , Modelos Teóricos , Preparações Farmacêuticas/metabolismo , Esgotos , Poluentes do Solo/metabolismo , Agricultura/métodos , Carbamazepina/metabolismo , Carbanilidas/metabolismo , Cimetidina/metabolismo , Difenidramina/metabolismo , Fluoxetina/metabolismo , Genfibrozila/metabolismo , Miconazol/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Triclosan/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-39030455

RESUMO

Prior to the arrival of Europeans in North America, forest and grasslands individually covered a 3rd of the conterminous United States; however, following the colonial and pioneer periods, respectively, these land cover categories were reduced to 70% and 50% of their original prominence. The dominant driving force for native land conversion was agriculture, which expanded exponentially from the Atlantic to the Pacific, comprising over half the total land area of America at its peak in 1950. However, farmland area has subsequently declined by 25%, so what has been driving native plant declines north of the 30th latitudinal parallel over the past 75 years? Analysis of recovery plans issued by the U.S. Fish and Wildlife Service indicates that of the over 900 plant species "listed" as threatened and endangered the primary driver of decline was invasive species, followed by habitat alteration, and development, which collectively accounted for 93.2% of the primary drivers for listed species. In Canada, these three drivers of decline were the primary drivers for 81% of listed species. Comparatively, herbicides were identified as the primary or secondary driver in 13 out of 1124 cases (1.2%). Given that agricultural land area is contracting in the U.S. and Canada, there appears to be a misconception that agrochemicals are the seminal cause of native plant decline. Here, we explore the individual contribution of drivers relative to the historical events of North America to provide context and perspective as well as focus and prioritize conservation efforts accordingly.

13.
Environ Toxicol Chem ; 43(4): 784-792, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38116991

RESUMO

With concern growing regarding the impact of microplastics (MPs) on terrestrial ecosystems, it is important to assess the role invertebrates may play in the fate of MPs within these ecosystems. Commonly, MPs enter these environments through improperly discarded waste or the application of treated biosolids and/or wastewater on agricultural soils. The present study investigated whether three species of terrestrial isopod (Porcellio scaber, Porcellio laevis, and Porcellionides pruinosus) ingest plastic debris and generate MPs during exposures varying from 24 h to 14 days and whether this may have an adverse effect on their health. Test vessels were designed to expose isopods to plastic fragments in the form of polyethylene plastic foam. Isopods were exposed to plastic that was either (1) pristine, or (2) weathered in a soil and water solution prior to incorporation in test vessels. When exposed to weathered polyethylene, all three species generated MPs (minimum-maximum size values for all durations inclusive: P. laevis = 114-1673 µm, P. scaber = 99-1635 µm, P. pruinosus = 85-1113 µm) through the consumption of macroplastic fragments with no observed impact on their health. In the shorter-duration exposures, the number of MPs generated by the isopod species in the present study was highly variable between experimental vessels (minimum-maximum generated MPs for 14-day exposure: P. laevis = 25-420, P. scaber = 50-583, P. pruinosus = 48-311). However, as the exposure durations increased, there was a clear trend of increasing MP generation, indicating that the isopods continued to consume the plastic fragments as long as the surface was weathered. A significant difference in the size of generated MPs was observed as well, with smaller isopod species generating smaller MP fragments on average. The results of the present study confirm that certain species of isopod can contribute to the generation of MPs, which constitutes an additional pathway of MP exposure to soil ecosystems. Environ Toxicol Chem 2024;43:784-792. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Isópodes , Microplásticos , Animais , Microplásticos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Polietileno/metabolismo , Ecossistema , Solo
14.
Environ Toxicol Chem ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837715

RESUMO

Springtails (subclass: Collembola) represent one of the most extensively studied invertebrate groups in soil ecotoxicology. This is because of their ease of laboratory culture, significant ecological role, and sensitivity to environmental contaminants. Folsomia candida (family: Isotomidae) is a globally widespread parthenogenetic species that is prevalent in laboratory toxicity testing with springtails. Conversely, Arrhopalites caecus (family: Arrhopalitidae), a parthenogenic globular springtail species, remains untested in soil ecotoxicology. This species is found in diverse habitats, including cave systems and forest leaf litter, and has a global distribution. The sensitivity of A. caecus to environmental contaminants, such as neonicotinoid insecticides, as well as its life history and optimal culturing conditions, are largely unknown. The present study describes the establishment of a pure A. caecus laboratory culture and characterization of its life cycle and culturing conditions. We assessed the sensitivity of A. caecus to various insecticides, including exposures to the neonicotinoid thiamethoxam in soil and through a novel feeding assay as well as to clothianidin and cyantraniliprole in spiked soil exposures. In 7- and 14-day exposures to thiamethoxam in agricultural soil, the 50% lethal concentration (LC50) values were determined to be 0.129 mg/kg dry weight and 0.010 mg/kg dry weight, respectively. The 14-day LC50 for exposure to thiamethoxam via spiked food was determined to be 0.307 mg/kg dry weight. In addition, the 28-day 50% effect concentration for inhibition of juvenile production from cyantraniliprole exposure in the same soil type was 0.055 mg/kg dry weight. Challenges encountered in using this species included susceptibility to mite infestation and low adult survival rates in the 28-day cyantraniliprole test. Environ Toxicol Chem 2024;00:1-16. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

15.
Environ Toxicol Chem ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980316

RESUMO

The toxicity of neonicotinoids and many of their replacement insecticides to nontarget soil invertebrates such as earthworms has previously been established. However, the long-term effects of these substances on these organisms are largely unknown. In the field of soil ecotoxicology, lumbricid earthworms such as Eisenia andrei are used extensively due to the availability of standardized test methods and their adaptability to laboratory culture and testing. Multigenerational studies have gained popularity and attention in recent years, with a shift toward the use of long-term assays and lower concentrations of test chemicals. The use of exposure concentrations that include those measured in a monitoring program carried out by the Government of Ontario presents a realistic exposure scenario that may not show significant effects in contemporary, shorter term studies. We used current standardized test methods as a basis for the development of multigenerational studies on E. andrei. The effects of exposure to a single application of the insecticides thiamethoxam and cyantraniliprole on the survival and reproduction of E. andrei were observed over three (thiamethoxam) or two (cyantraniliprole) generations using consecutive reproduction tests. No significant impacts on adult survival were reported in any generation for either insecticide, whereas reproduction decreased between the first and second generations in the thiamethoxam test, with median effective concentration (EC50) values of 0.022 mg/kg dry weight reported for the first generation compared with 0.002 mg/kg dry weight in the second generation. For cyantraniliprole, an EC50 of 0.064 was determined for the first generation compared with 0.016 mg/kg dry weight in the second generation. A third generation was completed for the thiamethoxam test, and a significant decrease in reproduction was observed in all treatments and controls compared with previous generations. No significant difference between thiamethoxam treatments and the control treatment was reported for the third generation. Collectively, these data indicate that exposure of oligochaetes to these two insecticides at concentrations representative of field conditions may result in long-term stresses. Environ Toxicol Chem 2024;00:1-13. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

16.
Microbiol Spectr ; 12(3): e0284123, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329361

RESUMO

Cryptococcus neoformans is a human fungal pathogen responsible for fatal infections, especially in patients with a depressed immune system. Overexposure to antifungal drugs due to prolonged treatment regimens and structure-similar applications in agriculture have weakened the efficacy of current antifungals in the clinic. The rapid evolution of antifungal resistance urges the discovery of new compounds that inhibit fungal virulence determinants, rather than directly killing the pathogen, as alternative strategies to overcome disease and reduce selective pressure toward resistance. Here, we evaluated the efficacy of freshwater mussel extracts (crude and clarified) against the production of well-defined virulence determinants (i.e., thermotolerance, melanin, capsule, and biofilm) and fluconazole resistance in C. neoformans. We demonstrated the extracts' influence on fungal thermotolerance, capsule production, and biofilm formation, as well as susceptibility to fluconazole in the presence of macrophages. Additionally, we measured the inhibitory activity of extracts against commercial peptidases (family representatives of cryptococcal orthologs) related to fungal virulence determinants and fluconazole resistance, and integrated these phenotypic findings with quantitative proteomics profiling. Our approach defined distinct signatures of each treatment and validated a new mechanism of anti-virulence action toward the polysaccharide capsule from a selected extract following fractionation. By understanding the mechanisms driving the antifungal activity of mussels, we may develop innovative treatment options to overcome fungal infections and promote susceptibility to fluconazole in resistant strains. IMPORTANCE: As the prevalence and severity of global fungal infections rise, along with an increasing incidence of antifungal resistance, new strategies to combat fungal pathogens and overcome resistance are urgently needed. Critically, our current methods to overcome fungal infections are limited and drive the evolution of resistance forward; however, an anti-virulence approach to disarm virulence factors of the pathogen and promote host cell clearance is promising. Here, we explore the efficacy of natural compounds derived from freshwater mussels against classical fungal virulence determinants, including thermotolerance, capsule production, stress response, and biofilm formation. We integrate our phenotypic discoveries with state-of-the-art mass spectrometry-based proteomics to identify mechanistic drivers of these antifungal properties and propose innovative avenues to reduce infection and support the treatment of resistant strains.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Virulência , Criptococose/microbiologia , Fatores de Virulência , Macrófagos
17.
Environ Toxicol Chem ; 43(4): 723-735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411309

RESUMO

Hyalella azteca is an epibenthic crustacean used in ecotoxicology, but there are challenges associated with standard methods using reproduction as an endpoint. A novel, 28-day reproduction toxicity test method for H. azteca was created to address these issues by initiating tests with sexually mature amphipods to eliminate the confounding effects of growth, using a sex ratio of seven females to three males to reduce reproductive variability, and conducting tests in water-only conditions to make recovery of juveniles easier and expand testing capabilities to water-soluble compounds. In the present study, we evaluated the 28-day novel method by comparing it with the 42-day standard test method in duplicate and parallel water-only, static-renewal exposures to sublethal concentrations of imidacloprid (0.5-8 µg/L). Both methods showed similar effects on survival, with survival approaching 50% in the highest test concentration (8 µg/L). However, the 42-day median effect concentrations (EC50s) for growth were more sensitive in the standard method (1.5-3.2 µg/L) compared with the 28-day EC50s generated by the novel method (>8 µg/L). Reproduction endpoints (juveniles/female) produced similar EC50s between methods, but the data were less variable in novel tests (smaller coefficients of variation); therefore, fewer replicates would be required to detect effects on reproduction compared with the standard method. In addition, novel tests generated 28 days of reproduction data compared with 14 days using standard tests and allowed survival and growth of sexes to be assessed independently. Thus, the novel method shows promise to improve the use of reproduction as an endpoint in water-only toxicity tests with H. azteca. Environ Toxicol Chem 2024;43:723-735. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Anfípodes , Formigas , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Animais , Feminino , Poluentes Químicos da Água/análise , Testes de Toxicidade/métodos , Reprodução , Água
18.
Environ Sci Pollut Res Int ; 31(13): 20293-20310, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372918

RESUMO

Fresh produce is an important component of maintaining cognitive and physical health, particularly for children. A mechanism to increase access to fresh produce is the construction of community gardens in urban centres. While reducing barriers to nutritious food, the soil of the community garden can contain contaminants (e.g. metals) depending on the location and how the garden was constructed. This study quantified, for the first time, seven metals (As, Cd, Cr, Cu, Pb, Mn, and Ni) in soil from 83 community gardens across the City of Winnipeg in Manitoba, Canada. Concentrations of metals in soil were used to create distributions for environmental exposure and estimated daily intake, which were then used to determine exceedances of soil quality guidelines and acceptable daily intakes, respectively. Raised garden beds and gardens further from roads had typically lower concentrations of metals in surface gardens and those nearer to roads. While some concentrations of metals exceeded CCME guidelines levels for the protection of environmental health, the vast majority represent a low risk. For human health, only As posed a quantifiable risk of exceeding the USEPA acceptable daily intake via the consumption of produce from gardens, though this was < 1.2% for the whole population and < 10.2% for children aged 1 to 2 years. Overall, this study is the first to show that the concentration of the metals in soil from gardens typically poses a low risk to environmental and human health. We recommend the use of raised gardens to further mitigate risk.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Humanos , Jardins , Manitoba , Monitoramento Ambiental , Poluentes do Solo/análise , Metais/análise , Canadá , Medição de Risco , Solo , Metais Pesados/análise
19.
Environ Toxicol Chem ; 43(4): 793-806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38116985

RESUMO

The application of biosolids to agricultural land has been identified as a major pathway of microplastic (MP) pollution to the environment. Very little research, however, has been done on the MP content of biosolids within Canada. Fifteen biosolid samples from different treatment processes (liquid, dewatered, pelletized, and alkali-stabilized) were collected from 11 sources across southern Ontario to quantify and characterize the MP load within them. All samples exhibited MP concentrations ranging from 188 200 (±24 161) to 512 000 (±28 571) MPs/kg dry weight and from 4122 (±231) to 453 746 (±38 194) MPs/kg wet weight. Field amendment of these biosolids can introduce up to 3.73 × 106 to 4.12 × 108 MP/ha of agricultural soil. There was no significant difference in the MP concentrations of liquid, dewatered, and pelletized samples; but a reduction in MP content was observed in alkali-stabilized biosolids. Fragments composed 57.6% of the MPs identified, while 36.7% were fibers. In addition, MPs showed an exponential increase in abundance with decreasing size. Characterization of MPs confirmed that polyester was the most abundant, while polyethylene, polypropylene, polyamide, polyacrylamide, and polyurethane were present across the majority of biosolid samples. The results of the present study provide an estimate of the potential extent of MP contamination to agricultural fields through the amendment of biosolids. Environ Toxicol Chem 2024;43:793-806. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Microplásticos , Plásticos , Ontário , Biossólidos , Esgotos/química , Solo , Álcalis
20.
Sci Total Environ ; 915: 170144, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38242468

RESUMO

Streams are susceptible to pesticide pollutants which are transported outside of the intended area of application from surrounding agricultural fields. It is essential to monitor the occurrence and levels of pesticides in aquatic ecosystems to comprehend their effects on the aquatic environment. The common sampling strategy used for monitoring pesticides in stream ecosystems is through the collection and analysis of grab water samples. However, grab water sampling may not effectively monitor pesticides due to its limited ability to capture temporal and spatial variability, potentially missing fluctuations and uneven distribution of pesticides in aquatic environments. Monitoring using periphyton and sediment sampling may offer a more comprehensive approach by accounting for accumulative processes and temporal variations. Periphyton are a collective of microorganisms that grow on hard surfaces in aquatic ecosystems. They are responsive to chemical and biological changes in the environment, and therefore have the potential to act as a cost-effective, integrated sampling tool to monitor pesticide exposures in aquatic ecosystems. The objective of this study was to assess pesticides detected through periphyton, suspended sediment, and conventional grab water sampling methods and identify the matrix that offers a more comprehensive characterization of a stream's pesticide exposure profile. Ten streams across Southern Ontario were sampled in 2021 and 2022. At each stream site, water, sediment and periphyton, colonizing both artificial and natural substrates, were collected and analyzed for the presence of ~500 pesticides. Each of the three matrices detected distinctive pesticide exposure profiles. The frequency of detection in periphyton, sediment and water matrices were related to pesticides' log Kow and log Koc (P < 0.05). In addition, periphyton bioconcentrated 22 pesticides above levels observed in the ambient water. The bioconcentration factors of pesticides in periphyton can be predicted from their log Kow (simple linear regressions, P < 0.05). The results demonstrate that sediment and periphyton accumulate pesticides in stream environments. This highlights the importance of monitoring pesticide exposure using these matrices to ensure a complete and comprehensive characterization of exposure in stream ecosystems.


Assuntos
Perifíton , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Ecossistema , Rios/química , Poluentes Químicos da Água/análise , Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA