RESUMO
The high speed on-off performance of GaN-based light-emitting diodes (LEDs) grown in c-plane direction is limited by long carrier lifetimes caused by spontaneous and piezoelectric polarization. This work demonstrates that this limitation can be overcome by m-planar core-shell InGaN/GaN nanowire LEDs grown on Si(111). Time-resolved electroluminescence studies exhibit 90-10% rise- and fall-times of about 220 ps under GHz electrical excitation. The data underline the potential of these devices for optical data communication in polymer fibers and free space.
Assuntos
Gálio/química , Índio/química , Iluminação/instrumentação , Nanofios/química , Semicondutores , Silício/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanofios/ultraestrutura , Tamanho da PartículaRESUMO
Functional and abundant substrate materials are relevant for applying all sophisticated semiconductor-based device components such as nanowire arrays. In the case of GaN nanowires grown by metalorganic vapor phase epitaxy, Si(111) substrates are widely used, together with an AlN interlayer to suppress the well-known Ga-based melt-back-etching. However, the AlN interlayer can degrade the interfacial conductivity of the Si(111) substrate. To reveal the possible impact of this interlayer on the overall electrical performance, an advanced analysis of the electrical behavior with suitable spatial resolution is essential. For the electrical investigation of the nanowire-to-substrate junction, we used a four-point probe measurement setup with sufficiently high spatial resolution. The charge separation behavior of the junction is also demonstrated by an electron beam-induced current mode, while the n-GaN nanowire (NW) core exhibits good electrical conductivity. The charge carrier-selective transport at the NW-to-substrate junction can be attributed to different, local material compositions by two main effects: the reduction of Ga adatoms by shadowing of the lower part of the NW structure by the top part during growth, i.e. the protection of the pedestal footprint from Ga adsorption. Our combination of investigation methods provides direct insight into the nanowire-to-substrate junction and leads to a model of the conductivity channels at the nanowire base. This knowledge is crucial for all future GaN bottom-up grown nanowire structure devices on conductive Si(111) substrates.
RESUMO
Well-defined semiconductor heterostructures are a basic requirement for the development of high-performance optoelectronic devices. In order to achieve the desired properties, a thorough study of the electrical behavior with a suitable spatial resolution is essential. For this, various sophisticated tip-based methods can be employed, such as conductive atomic force microscopy or multitip scanning tunneling microscopy (MT-STM). We demonstrate that in any tip-based measurement method, the tip-to-semiconductor contact is decisive for reliable and precise measurements and in interpreting the properties of the sample. For that, we used our ultrahigh-vacuum-based MT-STM coupled in vacuo to a reactor for the preparation of nanowires (NWs) with metal organic vapor phase epitaxy, and operated our MT-STM as a four-point nanoprober on III-V semiconductor NW heterostructures. We investigated a variety of upright, free-standing NWs with axial as well as coaxial heterostructures on the growth substrates. Our investigation reveals charging currents at the interface between the measuring tip and the semiconductor via native insulating oxide layers, which act as a metal-insulator-semiconductor capacitor with charging and discharging conditions in the operating voltage range. We analyze in detail the observed I-V characteristics and propose a strategy to achieve an optimized tip-to-semiconductor junction, which includes the influence of the native oxide layer on the overall electrical measurements. Our advanced experimental procedure enables a direct relation between the tip-to-NW junction and the electronic properties of as-grown (co)axial NWs providing precise guidance for all future tip-based investigations.
RESUMO
Axial GaAs nanowire p-n diodes, possibly one of the core elements of future nanowire solar cells and light emitters, were grown via the Au-assisted vapor-liquid-solid mode, contacted by electron beam lithography, and investigated using electron beam induced current measurements. The minority carrier diffusion lengths and dynamics of both, electrons and holes, were determined directly at the vicinity of the p-n junction. The generated photocurrent shows an exponential decay on both sides of the junction and the extracted diffusion lengths are about 1 order of magnitude lower compared to bulk material due to surface recombination. Moreover, the observed strong diameter-dependence is well in line with the surface-to-volume ratio of semiconductor nanowires. Estimating the surface recombination velocities clearly indicates a nonabrupt p-n junction, which is in essential agreement with the model of delayed dopant incorporation in the Au-assisted vapor-liquid-solid mechanism. Surface passivation using ammonium sulfide effectively reduces the surface recombination and thus leads to higher minority carrier diffusion lengths.
Assuntos
Arsenicais/química , Gálio/química , Modelos Químicos , Nanoestruturas/química , Semicondutores , Simulação por Computador , Difusão , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanoestruturas/ultraestruturaRESUMO
The optical and electrical characterization of nanostructures is crucial for all applications in nanophotonics. Particularly important is the knowledge of the optical near-field distribution for the design of future photonic devices. A common method to determine optical near-fields is scanning near-field optical microscopy (SNOM) which is slow and might distort the near-field. Here, we present a technique that permits sensing indirectly the infrared near-field in GaAs nanowires via its second-harmonic generated (SHG) signal utilizing a nonscanning far-field microscope. Using an incident light of 820 nm and the very short mean free path (16 nm) of the SHG signal in GaAs, we demonstrate a fast surface sensitive imaging technique without using a SNOM. We observe periodic intensity patterns in untapered and tapered GaAs nanowires that are attributed to the fundamental mode of a guided wave modulating the Mie-scattered incident light. The periodicity of the interferences permits to accurately determine the nanowires' radii by just using optical microscopy, i.e., without requiring electron microscopy.
RESUMO
Nanowire chip-based electrical and optical devices such as biochemical sensors, physical detectors, or light emitters combine outstanding functionality with a small footprint, reducing expensive material and energy consumption. The core functionality of many nanowire-based devices is embedded in their p-n junctions. To fully unleash their potential, such nanowire-based devices require - besides a high performance - stability and reliability. Here, we report on an axial p-n junction GaAs nanowire X-ray detector that enables ultra-high spatial resolution (~200 nm) compared to micron scale conventional ones. In-operando X-ray analytical techniques based on a focused synchrotron X-ray nanobeam allow probing the internal electrical field and observing hot electron effects at the nanoscale. Finally, we study device stability and find a selective hot electron induced oxidization in the n-doped segment of the p-n junction. Our findings demonstrate capabilities and limitations of p-n junction nanowires, providing insight for further improvement and eventual integration into on-chip devices.
RESUMO
Gallium arsenide nanowires are grown on 100 GaAs substrates, adopting the epitaxial relation and thus growing with an angle around 35 degrees off the substrate surface. These straight nanowires are irradiated with different kinds of energetic ions. Depending on the ion species and energy, downwards or upwards bending of the nanowires is observed to increase with ion fluence. In the case of upwards bending, the nanowires can be aligned towards the ion beam direction at high fluences. Defect formation (vacancies and interstitials) within the implantation cascade is identified as the key mechanism for bending. Monte Carlo simulations of the implantation are presented to substantiate the results.
Assuntos
Arsenicais/química , Cristalização/métodos , Gálio/química , Nanotubos/química , Nanotubos/efeitos da radiação , Semicondutores , Arsenicais/efeitos da radiação , Gálio/efeitos da radiação , Íons , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Conformação Molecular/efeitos da radiação , Nanotecnologia/métodos , Nanotubos/ultraestrutura , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
The charge transport through GaAs nanowires, partially p-doped and partially intrinsic, is analyzed by four-point resistance profiling along freestanding nanowires using a multip-STM. The charge transport channel in the undoped segment is assigned to the surface conductivity, while the interior of the nanowire is the conductance channel in the p-doped segment. The convoluted interplay between conduction through the interior of the nanowire and surface state conduction is studied in detail. Measurements of the I-V curves along the nanowires provide the experimental basis for the proposed charge transport model for the transition of the conduction from the interior to the surface of the nanowire. A voltage drop along the surface state conduction channel leads to an upward shift of the band edges at the surface. This results, for higher applied voltages, in the removal of the depletion layer and an opening of a conductance channel between the interior of the nanowire and the surface states.
RESUMO
In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.