Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Cell ; 173(3): 649-664.e20, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677511

RESUMO

Resistance to chemotherapy plays a significant role in cancer mortality. To identify genetic units affecting sensitivity to cytarabine, the mainstay of treatment for acute myeloid leukemia (AML), we developed a comprehensive and integrated genome-wide platform based on a dual protein-coding and non-coding integrated CRISPRa screening (DICaS). Putative resistance genes were initially identified using pharmacogenetic data from 760 human pan-cancer cell lines. Subsequently, genome scale functional characterization of both coding and long non-coding RNA (lncRNA) genes by CRISPR activation was performed. For lncRNA functional assessment, we developed a CRISPR activation of lncRNA (CaLR) strategy, targeting 14,701 lncRNA genes. Computational and functional analysis identified novel cell-cycle, survival/apoptosis, and cancer signaling genes. Furthermore, transcriptional activation of the GAS6-AS2 lncRNA, identified in our analysis, leads to hyperactivation of the GAS6/TAM pathway, a resistance mechanism in multiple cancers including AML. Thus, DICaS represents a novel and powerful approach to identify integrated coding and non-coding pathways of therapeutic relevance.


Assuntos
Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos , Genoma Humano , RNA Longo não Codificante/genética , Animais , Citarabina/farmacologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Masculino , Camundongos , Farmacogenética , Proteínas/genética , RNA/análise , RNA Mensageiro/genética , Transdução de Sinais
2.
Cell ; 147(2): 344-57, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000013

RESUMO

Here, we demonstrate that protein-coding RNA transcripts can crosstalk by competing for common microRNAs, with microRNA response elements as the foundation of this interaction. We have termed such RNA transcripts as competing endogenous RNAs (ceRNAs). We tested this hypothesis in the context of PTEN, a key tumor suppressor whose abundance determines critical outcomes in tumorigenesis. By a combined computational and experimental approach, we identified and validated endogenous protein-coding transcripts that regulate PTEN, antagonize PI3K/AKT signaling, and possess growth- and tumor-suppressive properties. Notably, we also show that these genes display concordant expression patterns with PTEN and copy number loss in cancers. Our study presents a road map for the prediction and validation of ceRNA activity and networks and thus imparts a trans-regulatory function to protein-coding mRNAs.


Assuntos
Regulação da Expressão Gênica , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Animais , Humanos , Camundongos , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/genética , RNA não Traduzido/genética
3.
Cell ; 147(2): 382-95, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000016

RESUMO

We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of significant enrichment of putative PTEN ceRNAs among genes whose loss accelerates tumorigenesis following Sleeping Beauty insertional mutagenesis in a mouse model of melanoma. We validated several putative PTEN ceRNAs and further characterized one, the ZEB2 transcript. We show that ZEB2 modulates PTEN protein levels in a microRNA-dependent, protein coding-independent manner. Attenuation of ZEB2 expression activates the PI3K/AKT pathway, enhances cell transformation, and commonly occurs in human melanomas and other cancers expressing low PTEN levels. Our study genetically identifies multiple putative microRNA decoys for PTEN, validates ZEB2 mRNA as a bona fide PTEN ceRNA, and demonstrates that abrogated ZEB2 expression cooperates with BRAF(V600E) to promote melanomagenesis.


Assuntos
Proteínas de Homeodomínio/genética , Melanoma/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Regiões 3' não Traduzidas , Animais , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , Mutagênese Insercional , Proteínas Repressoras/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco
4.
Mol Cancer ; 23(1): 105, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755661

RESUMO

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Proteína Companheira de mTOR Insensível à Rapamicina , Humanos , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos , Animais , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , Mutação , Regulação para Baixo , Proteômica/métodos
5.
Eur J Immunol ; 53(12): e2350529, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741290

RESUMO

TDC are hematopoietic cells that combine dendritic cell (DC) and conventional T-cell markers and functional properties. They were identified in secondary lymphoid organs (SLOs) of naïve mice as cells expressing CD11c, major histocompatibility molecules (MHC)-II, and the T-cell receptor (TCR). Despite thorough characterization, a physiological role for TDC remains to be determined. Unfortunately, using CD11c as a marker for TDC has the caveat of its upregulation on different cells, including T cells, upon activation. Here, we took advantage of Zbtb46-GFP reporter mice to explore the frequency and localization of TDC in different tissues at steady state and upon viral infection. RNA sequencing analysis confirmed that TDC sorted from Zbtb46-GFP mice have a gene signature that is distinct from conventional T cells and DC. In addition, this reporter model allowed for identification of TDC in situ not only in SLOs but also in the liver and lung of naïve mice. Interestingly, we found that TDC numbers in the SLOs increased upon viral infection, suggesting that TDC might play a role during viral infections. In conclusion, we propose a visualization strategy that might shed light on the physiological role of TDC in several pathological contexts, including infection and cancer.


Assuntos
Linfócitos T , Viroses , Camundongos , Animais , Células Dendríticas/patologia , Antígeno CD11c , Camundongos Endogâmicos C57BL
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526692

RESUMO

A hallmark of cancer, including pancreatic ductal adenocarcinoma (PDA), is a massive stromal and inflammatory reaction. Many efforts have been made to identify the anti- or protumoral role of cytokines and immune subpopulations within the stroma. Here, we investigated the role of interleukin-17A (IL17A) and its effect on tumor fibroblasts and the tumor microenvironment. We used a spontaneous PDA mouse model (KPC) crossed to IL17A knockout mice to show an extensive desmoplastic reaction, without impaired immune infiltration. Macrophages, especially CD80+ and T cells, were more abundant at the earlier time point. In T cells, a decrease in FoxP3+ cells and an increase in CD8+ T cells were observed in KPC/IL17A-/- mice. Fibroblasts isolated from IL17A+/+ and IL17A-/- KPC mice revealed very different messenger RNA (mRNA) and protein profiles. IL17A-/- fibroblasts displayed the ability to restrain tumor cell invasion by producing factors involved in extracellular matrix remodeling, increasing T cell recruitment, and producing higher levels of cytokines and chemokines favoring T helper 1 cell recruitment and activation and lower levels of those recruiting myeloid/granulocytic immune cells. Single-cell quantitative PCR on isolated fibroblasts confirmed a very divergent profile of IL17A-proficient and -deficient cells. All these features can be ascribed to increased levels of IL17F observed in the sera of IL17A-/- mice, and to the higher expression of its cognate receptor (IL17RC) specifically in IL17A-/- cancer-associated fibroblasts (CAFs). In addition to the known effects on neoplastic cell transformation, the IL17 cytokine family uniquely affects fibroblasts, representing a suitable candidate target for combinatorial immune-based therapies in PDA.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Interleucina-17/genética , Receptores de Interleucina/genética , Adenocarcinoma/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Humanos , Camundongos , Camundongos Knockout , Microambiente Tumoral/genética
7.
Am J Hum Genet ; 102(2): 207-218, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357977

RESUMO

Genome expansion is believed to be an important driver of the evolution of gene regulation. To investigate the role of a newly arising sequence in rewiring regulatory networks, we estimated the age of each region of the human genome by applying maximum parsimony to genome-wide alignments with 100 vertebrates. We then studied the age distribution of several types of functional regions, with a focus on regulatory elements. The age distribution of regulatory elements reveals the extensive use of newly formed genomic sequence in the evolution of regulatory interactions. Many transcription factors have expanded their repertoire of targets through waves of genomic expansions that can be traced to specific evolutionary times. Repeated elements contributed a major part of such expansion: many classes of such elements are enriched in binding sites of one or a few specific transcription factors, whose binding sites are localized in specific portions of the element and characterized by distinctive motif words. These features suggest that the binding sites were available as soon as the new sequence entered the genome, rather than being created later by accumulation of point mutations. By comparing the age of regulatory regions to the evolutionary shift in expression of nearby genes, we show that rewiring through genome expansion played an important role in shaping human regulatory networks.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Genoma Humano , Sequência de Bases , Sítios de Ligação , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica , Humanos , Motivos de Nucleotídeos/genética , Filogenia , Fatores de Transcrição/metabolismo
8.
Age Ageing ; 50(4): 1261-1267, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-33480986

RESUMO

INTRODUCTION: Prevention of frailty is paramount in older adults. We evaluated the efficacy of a tailored multidomain intervention, monitored with the My Active and Healthy Aging platform, in reducing conversion from a prefrail status to overt frailty and preventing decline in quality of life. METHODS: We performed a multicentre, multicultural, randomised control study. The effects of multidomain interventions on frailty parameters, quality of life, physical, cognitive, psychosocial function, nutrition and sleep were evaluated in a group of 101 prefrail older subjects and compared with 100 prefrail controls, receiving general health advice. RESULTS: At the 12-month assessment, controls showed a decline in quality of life that was absent in the active group. In addition, active participants showed an increase in mood and nutrition function. No effect on remaining parameter was observed. DISCUSSION: Our study supports the use of personalised multidomain intervention, monitored with an information and communication technology platform, in preventing quality of life decline in older adults.


Assuntos
Fragilidade , Envelhecimento Saudável , Idoso , Fragilidade/diagnóstico , Fragilidade/prevenção & controle , Humanos , Estado Nutricional , Qualidade de Vida , Projetos de Pesquisa
9.
Development ; 144(3): 464-478, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049660

RESUMO

Intestinal smooth muscle cells (iSMCs) are a crucial component of the adult gastrointestinal tract and support intestinal differentiation, peristalsis and epithelial homeostasis during development. Despite these crucial roles, the origin of iSMCs and the mechanisms responsible for their differentiation and function remain largely unknown in vertebrates. Here, we demonstrate that iSMCs arise from the lateral plate mesoderm (LPM) in a stepwise process. Combining pharmacological and genetic approaches, we show that TGFß/Alk5 signaling drives the LPM ventral migration and commitment to an iSMC fate. The Alk5-dependent induction of zeb1a and foxo1a is required for this morphogenetic process: zeb1a is responsible for driving LPM migration around the gut, whereas foxo1a regulates LPM predisposition to iSMC differentiation. We further show that TGFß, zeb1a and foxo1a are tightly linked together by miR-145 In iSMC-committed cells, TGFß induces the expression of miR-145, which in turn is able to downregulate zeb1a and foxo1a The absence of miR-145 results in only a slight reduction in the number of iSMCs, which still express mesenchymal genes but fail to contract. Together, our data uncover a cascade of molecular events that govern distinct morphogenetic steps during the emergence and differentiation of vertebrate iSMCs.


Assuntos
Intestinos/citologia , Miócitos de Músculo Liso/citologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Morfogênese , Miócitos de Músculo Liso/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
10.
Neurol Sci ; 41(2): 329-333, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31586289

RESUMO

BACKGROUND: Ultrasonography of the optic nerve sheath diameter (ONSD) is used for the non-invasive assessment of increased intracranial pressure (ICP). ONSD values are usually obtained by averaging the measurements of the two eyes, but asymmetric ONSD dilation is possible, leading to potentially inaccurate ICP estimation when using binocular averaging. In addition, few data are available about the asymmetry of the ONSD and the use of the maximum ONSD value between eyes for raised ICP detection. The aim of the study was to evaluate the interocular ONSD asymmetry in healthy subjects and patients with intracranial hypertension (IH) by ultrasonography and to investigate whether the maximum ONSD could be as useful as the binocular assessment. METHODS: Forty healthy subjects and 40 patients with IH (20 with idiopathic intracranial hypertension and 20 with intracerebral hemorrhage) who underwent transorbital sonography were retrospectively enrolled. The prevalence and degree of ONSD asymmetry were compared among groups; ONSD median binocular and maximum values were compared. RESULTS: Forty-two out of 80 subjects (52.5%) showed significant ONSD asymmetry, without significant differences in prevalence among groups (p = 0.28). The median asymmetry was higher in patients than in healthy subjects (0.45 mm vs 0.23 mm; p = 0.007), without significant differences between the two pathologies (p = 0.58). Both binocular and maximum ONSD measurements were significantly higher in patients with IH than in controls (p < 0.001). CONCLUSIONS: Interocular ONSD asymmetry occurs both in healthy subjects and, more consistently, in patients with IH. Both binocular and maximum ONSD may be useful markers for increased ICP detection.


Assuntos
Hipertensão Intracraniana/patologia , Pressão Intracraniana/fisiologia , Nervo Óptico/patologia , Pseudotumor Cerebral/patologia , Adulto , Idoso , Hemorragia Cerebral/patologia , Olho/patologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
11.
Genes Dev ; 26(17): 1926-44, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22899010

RESUMO

Growth of numerous cancer types is believed to be driven by a subpopulation of poorly differentiated cells, often referred to as cancer stem cells (CSCs), that have the capacity for self-renewal, tumor initiation, and generation of nontumorigenic progeny. Despite their potentially key role in tumor establishment and maintenance, the energy requirements of these cells and the mechanisms that regulate their energy production are unknown. Here, we show that the oncofetal insulin-like growth factor 2 mRNA-binding protein 2 (IMP2, IGF2BP2) regulates oxidative phosphorylation (OXPHOS) in primary glioblastoma (GBM) sphere cultures (gliomaspheres), an established in vitro model for CSC expansion. We demonstrate that IMP2 binds several mRNAs that encode mitochondrial respiratory chain complex subunits and that it interacts with complex I (NADH:ubiquinone oxidoreductase) proteins. Depletion of IMP2 in gliomaspheres decreases their oxygen consumption rate and both complex I and complex IV activity that results in impaired clonogenicity in vitro and tumorigenicity in vivo. Importantly, inhibition of OXPHOS but not of glycolysis abolishes GBM cell clonogenicity. Our observations suggest that gliomaspheres depend on OXPHOS for their energy production and survival and that IMP2 expression provides a key mechanism to ensure OXPHOS maintenance by delivering respiratory chain subunit-encoding mRNAs to mitochondria and contributing to complex I and complex IV assembly.


Assuntos
Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosforilação Oxidativa , Proteínas de Ligação a RNA/metabolismo , Animais , Encéfalo/metabolismo , Hipóxia Celular/fisiologia , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Rotenona/farmacologia , Células Tumorais Cultivadas , Desacopladores/farmacologia
12.
Int J Mol Sci ; 21(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322692

RESUMO

Biological systems respond to perturbations through the rewiring of molecular interactions, organised in gene regulatory networks (GRNs). Among these, the increasingly high availability of transcriptomic data makes gene co-expression networks the most exploited ones. Differential co-expression networks are useful tools to identify changes in response to an external perturbation, such as mutations predisposing to cancer development, and leading to changes in the activity of gene expression regulators or signalling. They can help explain the robustness of cancer cells to perturbations and identify promising candidates for targeted therapy, moreover providing higher specificity with respect to standard co-expression methods. Here, we comprehensively review the literature about the methods developed to assess differential co-expression and their applications to cancer biology. Via the comparison of normal and diseased conditions and of different tumour stages, studies based on these methods led to the definition of pathways involved in gene network reorganisation upon oncogenes' mutations and tumour progression, often converging on immune system signalling. A relevant implementation still lagging behind is the integration of different data types, which would greatly improve network interpretability. Most importantly, performance and predictivity evaluation of the large variety of mathematical models proposed would urgently require experimental validations and systematic comparisons. We believe that future work on differential gene co-expression networks, complemented with additional omics data and experimentally tested, will considerably improve our insights into the biology of tumours.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes , Neoplasias/metabolismo , Transdução de Sinais/genética , Algoritmos , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Neoplasias/genética , Transcriptoma/genética
13.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963158

RESUMO

The RNA-binding protein, Epithelial Splicing Regulatory Protein 1 (ESRP1) can promote or suppress tumorigenesis depending on the cell type and disease context. In colorectal cancer, we have previously shown that aberrantly high ESRP1 expression can drive tumor progression. In order to unveil the mechanisms by which ESRP1 can modulate cancer traits, we searched for proteins affected by modulation of Esrp1 in two human colorectal cancer cell lines, HCA24 and COLO320DM, by proteomics analysis. Proteins hosted by endogenous ESRP1 ribonucleoprotein complex in HCA24 cells were also analyzed following RNA-immunoprecipitation. Proteomics data were complemented with bioinformatics approach to exploit publicly available data on protein-protein interaction (PPI). Gene Ontology was analysed to identify a common molecular signature possibly explaining the pro-tumorigenic role of ESRP1. Interestingly, proteins identified herein support a role for ESRP1 in response to external stimulus, regulation of cell cycle and hypoxia. Our data provide further insights into factors affected by and entwined with ESRP1 in colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Ligação Proteica , Proteínas de Ligação a RNA/genética
14.
Nature ; 502(7470): 228-31, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24005325

RESUMO

Evolution is typically thought to proceed through divergence of genes, proteins and ultimately phenotypes. However, similar traits might also evolve convergently in unrelated taxa owing to similar selection pressures. Adaptive phenotypic convergence is widespread in nature, and recent results from several genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution, although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show that convergence is not a rare process restricted to several loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four newly sequenced bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the bottlenose dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Unexpectedly, we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognized.


Assuntos
Evolução Biológica , Quirópteros/classificação , Quirópteros/genética , Golfinhos/classificação , Golfinhos/genética , Ecolocação , Genoma/genética , Animais , Audição/genética , Filogenia , Seleção Genética , Visão Ocular/genética
15.
Proc Natl Acad Sci U S A ; 113(51): E8286-E8295, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930306

RESUMO

Invariant natural killer T cells (iNKT) cells are T lymphocytes displaying innate effector functions, acquired through a distinct thymic developmental program regulated by microRNAs (miRNAs). Deleting miRNAs by Dicer ablation (Dicer KO) in thymocytes selectively impairs iNKT cell survival and functional differentiation. To unravel this miRNA-dependent program, we systemically identified transcripts that were differentially expressed between WT and Dicer KO iNKT cells at different differentiation stages and predicted to be targeted by the iNKT cell-specific miRNAs. TGF-ß receptor II (TGF-ßRII), critically implicated in iNKT cell differentiation, was found up-regulated in iNKT Dicer KO cells together with enhanced TGF-ß signaling. miRNA members of the miR-17∼92 family clusters were predicted to target Tgfbr2 mRNA upon iNKT cell development. iNKT cells lacking all three miR-17∼92 family clusters (miR-17∼92, miR-106a∼363, miR-106b∼25) phenocopied both increased TGF-ßRII expression and signaling, and defective effector differentiation, displayed by iNKT Dicer KO cells. Consistently, genetic ablation of TGF-ß signaling in the absence of miRNAs rescued iNKT cell differentiation. These results elucidate the global impact of miRNAs on the iNKT cell developmental program and uncover the targeting of a lineage-specific cytokine signaling by miRNAs as a mechanism regulating innate-like T-cell development and effector differentiation.


Assuntos
MicroRNAs/genética , Células T Matadoras Naturais/citologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Antígenos CD1d/metabolismo , Diferenciação Celular , Citocinas/metabolismo , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , Teste de Complementação Genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica , Fenótipo , RNA Mensageiro/metabolismo , Ribonuclease III/genética , Transdução de Sinais , Timo/metabolismo
16.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881740

RESUMO

The G protein-coupled cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and their endocannabinoid (eCBs) ligands, have been implicated in several aspects of brain wiring during development. Here we aim to assess whether interfering with CB1R affects development, neuritogenesis and pathfinding of GnRH and AgRP neurons, forebrain neurons that control respectively reproduction and appetite. We pharmacologically and genetically interfered with CB1R in zebrafish strains with fluorescently labeled GnRH3 and the AgRP1 neurons. By applying CB1R antagonists we observed a reduced number of GnRH3 neurons, fiber misrouting and altered fasciculation. Similar phenotypes were observed by CB1R knockdown. Interfering with CB1R also resulted in a reduced number, misrouting and poor fasciculation of the AgRP1 neuron's axonal projections. Using a bioinformatic approach followed by qPCR validation, we have attempted to link CB1R functions with known guidance and fasciculation proteins. The search identified stathmin-2, a protein controlling microtubule dynamics, previously demonstrated to be coexpressed with CB1R and now shown to be downregulated upon interference with CB1R in zebrafish. Together, these results raise the likely possibility that embryonic exposure to low doses of CB1R-interfering compounds could impact on the development of the neuroendocrine systems controlling sexual maturation, reproduction and food intake.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Axônios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Receptor CB1 de Canabinoide/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Benzoxazinas/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Morfolinas/farmacologia , Morfolinos/metabolismo , Naftalenos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
17.
Int J Mol Sci ; 20(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091699

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) possess pro-regenerative potential in different animal models with renal injury. EVs contain different molecules, including proteins, lipids and nucleic acids. Among the shuttled molecules, miRNAs have a relevant role in the pro-regenerative effects of EVs and are a promising target for therapeutic interventions. The aim of this study was to increase the content of specific miRNAs in EVs that are known to be involved in the pro-regenerative effect of EVs, and to assess the capacity of modified EVs to contribute to renal regeneration in in vivo models with acute kidney injuries. To this purpose, MSCs were transiently transfected with specific miRNA mimics by electroporation. Molecular analyses showed that, after transfection, MSCs and derived EVs were efficiently enriched in the selected miRNAs. In vitro and in vivo experiments indicated that EVs engineered with miRNAs maintained their pro-regenerative effects. Of relevance, engineered EVs were more effective than EVs derived from naïve MSCs when used at suboptimal doses. This suggests the potential use of a low amount of EVs (82.5 × 106) to obtain the renal regenerative effect.


Assuntos
Injúria Renal Aguda/terapia , Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , MicroRNAs/genética , Terapêutica com RNAi/métodos , Regeneração , Animais , Células Cultivadas , Vesículas Extracelulares/genética , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos SCID , MicroRNAs/metabolismo
18.
EMBO J ; 33(19): 2201-15, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25100735

RESUMO

Inactivation of the retinoblastoma tumor suppressor (pRb) is a common oncogenic event that alters the expression of genes important for cell cycle progression, senescence, and apoptosis. However, in many contexts, the properties of pRb-deficient cells are similar to wild-type cells suggesting there may be processes that counterbalance the transcriptional changes associated with pRb inactivation. Therefore, we have looked for sets of evolutionary conserved, functionally related genes that are direct targets of pRb/E2F proteins. We show that the expression of NANOS, a key facilitator of the Pumilio (PUM) post-transcriptional repressor complex, is directly repressed by pRb/E2F in flies and humans. In both species, NANOS expression increases following inactivation of pRb/RBF1 and becomes important for tissue homeostasis. By analyzing datasets from normal retinal tissue and pRb-null retinoblastomas, we find a strong enrichment for putative PUM substrates among genes de-regulated in tumors. These include pro-apoptotic genes that are transcriptionally down-regulated upon pRb loss, and we characterize two such candidates, MAP2K3 and MAP3K1, as direct PUM substrates. Our data suggest that NANOS increases in importance in pRb-deficient cells and helps to maintain homeostasis by repressing the translation of transcripts containing PUM Regulatory Elements (PRE).


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Proteína do Retinoblastoma/fisiologia , Animais , Animais Geneticamente Modificados , Western Blotting , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Humanos , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Interferência de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Genes Dev ; 24(9): 916-32, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20382729

RESUMO

Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.


Assuntos
Reprogramação Celular , Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Adolescente , Adulto , Diferenciação Celular , Linhagem Celular Tumoral , Criança , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína Homeobox Nanog , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fenótipo , Sarcoma de Ewing/fisiopatologia , Células Tumorais Cultivadas
20.
BMC Bioinformatics ; 18(Suppl 5): 144, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28361701

RESUMO

BACKGROUND: In recent years long non coding RNAs (lncRNAs) have been the subject of increasing interest. Thanks to many recent functional studies, the existence of a large class of lncRNAs with potential regulatory functions is now widely accepted. Although an increasing number of lncRNAs is being characterized and shown to be involved in many biological processes, the functions of the vast majority lncRNA genes is still unknown. Therefore computational methods able to take advantage of the increasing amount of publicly available data to predict lncRNA functions could be very useful. RESULTS: Since coding genes are much better annotated than lncRNAs, we attempted to project known functional information regarding proteins onto non coding genes using the guilt by association principle: if a gene shows an expression profile that correlates with those of a set of coding genes involved in a given function, that gene is probably involved in the same function. We computed gene coexpression for 30 human tissues and 9 vertebrates and mined the resulting networks with a methodology inspired by the rank product algorithm used to identify differentially expressed genes. Using different types of reference data we can predict putative new annotations for thousands of lncRNAs and proteins, ranging from cellular localization to relevance for disease and cancer. CONCLUSIONS: New function of coding genes and lncRNA can be profitably predicted using tissue specific coexpression, as well as expression of orthologous genes in different species. The data are available for download and through a user-friendly web interface at www.funcpred.com .


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Modelos Genéticos , RNA Longo não Codificante/genética , Transcriptoma , Algoritmos , Animais , Evolução Molecular , Humanos , Especificidade de Órgãos , RNA Longo não Codificante/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA