Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nat Methods ; 20(8): 1174-1178, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468619

RESUMO

Multiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.


Assuntos
Anticorpos , Recursos Comunitários , Humanos , Reprodutibilidade dos Testes , Diagnóstico por Imagem
2.
Artigo em Inglês | MEDLINE | ID: mdl-39447176

RESUMO

The lung is a vital organ that undergoes extensive morphological and functional changes during postnatal development. To disambiguate how different cell populations contribute to organ development, we performed proteomic and transcriptomic analyses of four sorted cell populations from the lung of human subjects aged 0 to 8 years-old with a focus on early life. The cell populations analyzed included epithelial, endothelial, mesenchymal, and immune cells. Our results revealed distinct molecular signatures for each of the sorted cell populations that enable the description of molecular shifts occurring in these populations during post-natal development. We confirmed that the proteome of the different cell populations was distinct regardless of age and identified functions specific to each population. We identified a series of cell population protein markers, including those located at the cell surface, that show differential expression and distribution on RNA in situ hybridization and immunofluorescence imaging. We validated the spatial distribution of AT1 and endothelial cell surface markers. Temporal analyses of the proteomes of the four populations revealed processes modulated during postnatal development and clarified the findings obtained from whole tissue proteome studies. Finally, the proteome was compared to a transcriptomics survey performed on the same lung samples to evaluate processes under post-transcriptional control.

3.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L135-L148, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084407

RESUMO

Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.


Assuntos
Bronquiolite Obliterante , Diacetil , Humanos , Queratina-5/metabolismo , Diacetil/metabolismo , Mecloretamina/metabolismo , Mucosa Respiratória/metabolismo , Bronquiolite Obliterante/induzido quimicamente , Bronquiolite Obliterante/metabolismo , Células Epiteliais/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442187

RESUMO

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Assuntos
Pulmão , Transcriptoma , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Recém-Nascido , Lactente , Criança , Pré-Escolar , Masculino , Feminino , Análise de Sequência de RNA/métodos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica
5.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L419-L433, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489262

RESUMO

Bronchopulmonary dysplasia (BPD) is a disease of prematurity related to the arrest of normal lung development. The objective of this study was to better understand how proteome modulation and cell-type shifts are noted in BPD pathology. Pediatric human donors aged 1-3 yr were classified based on history of prematurity and histopathology consistent with "healed" BPD (hBPD, n = 3) and "established" BPD (eBPD, n = 3) compared with respective full-term born (n = 6) age-matched term controls. Proteins were quantified by tandem mass spectroscopy with selected Western blot validations. Multiplexed immunofluorescence (MxIF) microscopy was performed on lung sections to enumerate cell types. Protein abundances and MxIF cell frequencies were compared among groups using ANOVA. Cell type and ontology enrichment were performed using an in-house tool and/or EnrichR. Proteomics detected 5,746 unique proteins, 186 upregulated and 534 downregulated, in eBPD versus control with fewer proteins differentially abundant in hBPD as compared with age-matched term controls. Cell-type enrichment suggested a loss of alveolar type I, alveolar type II, endothelial/capillary, and lymphatics, and an increase in smooth muscle and fibroblasts consistent with MxIF. Histochemistry and Western analysis also supported predictions of upregulated ferroptosis in eBPD versus control. Finally, several extracellular matrix components mapping to angiogenesis signaling pathways were altered in eBPD. Despite clear parsing by protein abundance, comparative MxIF analysis confirms phenotypic variability in BPD. This work provides the first demonstration of tandem mass spectrometry and multiplexed molecular analysis of human lung tissue for critical elucidation of BPD trajectory-defining factors into early childhood.NEW & NOTEWORTHY We provide new insights into the natural history of bronchopulmonary dysplasia in donor human lungs after the neonatal intensive care unit hospitalization. This study provides new insights into how the proteome and histopathology of BPD changes in early childhood, uncovering novel pathways for future study.


Assuntos
Displasia Broncopulmonar , Pré-Escolar , Recém-Nascido , Humanos , Criança , Displasia Broncopulmonar/patologia , Imuno-Histoquímica , Proteoma , Proteômica , Pulmão/metabolismo
6.
Am J Respir Crit Care Med ; 205(2): 208-218, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752721

RESUMO

Rationale: The current understanding of human lung development derives mostly from animal studies. Although transcript-level studies have analyzed human donor tissue to identify genes expressed during normal human lung development, protein-level analysis that would enable the generation of new hypotheses on the processes involved in pulmonary development are lacking. Objectives: To define the temporal dynamic of protein expression during human lung development. Methods: We performed proteomics analysis of human lungs at 10 distinct times from birth to 8 years to identify the molecular networks mediating postnatal lung maturation. Measurements and Main Results: We identified 8,938 proteins providing a comprehensive view of the developing human lung proteome. The analysis of the data supports the existence of distinct molecular substages of alveolar development and predicted the age of independent human lung samples, and extensive remodeling of the lung proteome occurred during postnatal development. Evidence of post-transcriptional control was identified in early postnatal development. An extensive extracellular matrix remodeling was supported by changes in the proteome during alveologenesis. The concept of maturation of the immune system as an inherent part of normal lung development was substantiated by flow cytometry and transcriptomics. Conclusions: This study provides the first in-depth characterization of the human lung proteome during development, providing a unique proteomic resource freely accessible at Lungmap.net. The data support the extensive remodeling of the lung proteome during development, the existence of molecular substages of alveologenesis, and evidence of post-transcriptional control in early postnatal development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Proteínas/genética , Proteínas/metabolismo , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteômica
7.
Am J Respir Cell Mol Biol ; 66(4): 402-414, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35045271

RESUMO

Oxygen supplementation in preterm infants disrupts alveolar epithelial type 2 (AT2) cell proliferation through poorly understood mechanisms. Here, newborn mice are used to understand how hyperoxia stimulates an early aberrant wave of AT2 cell proliferation that occurs between Postnatal Days (PNDs) 0 and 4. RNA-sequencing analysis of AT2 cells isolated from PND4 mice revealed hyperoxia stimulates expression of mitochondrial-specific methylenetetrahydrofolate dehydrogenase 2 and other genes involved in mitochondrial one-carbon coupled folate metabolism and serine synthesis. The same genes are induced when AT2 cells normally proliferate on PND7 and when they proliferate in response to the mitogen fibroblast growth factor 7. However, hyperoxia selectively stimulated their expression via the stress-responsive activating transcription factor 4 (ATF4). Administration of the mitochondrial superoxide scavenger mitoTEMPO during hyperoxia suppressed ATF4 and thus early AT2 cell proliferation, but it had no effect on normative AT2 cell proliferation seen on PND7. Because ATF4 and methylenetetrahydrofolate dehydrogenase are detected in hyperplastic AT2 cells of preterm infant humans and baboons with bronchopulmonary dysplasia, dampening mitochondrial oxidative stress and ATF4 activation may provide new opportunities for controlling excess AT2 cell proliferation in neonatal lung disease.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Hiperóxia , Fator 4 Ativador da Transcrição/genética , Animais , Animais Recém-Nascidos , Proliferação de Células , Ácido Fólico/farmacologia , Hiperóxia/metabolismo , Recém-Nascido Prematuro , Camundongos
8.
Artigo em Inglês | MEDLINE | ID: mdl-36413377

RESUMO

An improved understanding of the human lung necessitates advanced systems models informed by an ever-increasing repertoire of molecular omics, cellular, imaging, and pathological datasets. To centralize and standardize information across broad lung research efforts we expanded the LungMAP.net website into a new gateway portal. This portal connects a broad spectrum of research networks, bulk and single-cell multi-omics data and a diverse collection of image data that span mammalian lung development, and disease. The data are standardized across species and technologies using harmonized data and metadata models that leverage recent advances including those from the Human Cell Atlas, diverse ontologies, and the LungMAP CellCards initiative. To cultivate future discoveries, we have aggregated a diverse collection of single-cell atlases for multiple species (human, rhesus, mouse), to enable consistent queries across technologies, cohorts, age, disease, and drug treatment. These atlases are provided as independent and integrated queryable datasets, with an emphasis on dynamic visualization, figure generation, re-analysis, cell-type curation, and automated reference-based classification of user-provided single-cell genomics datasets (Azimuth). As this resource grows, we intend to increase the breadth of available interactive interfaces, supported data types, data portals and datasets from LungMAP and external research efforts.

9.
Thorax ; 77(1): 47-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33883249

RESUMO

INTRODUCTION: Neonatal lung injury as a consequence of hyperoxia (HO) therapy and ventilator care contribute to the development of bronchopulmonary dysplasia (BPD). Increased expression and activity of lysyl oxidase (LOX), a key enzyme that cross-links collagen, was associated with increased sphingosine kinase 1 (SPHK1) in human BPD. We, therefore, examined closely the link between LOX and SPHK1 in BPD. METHOD: The enzyme expression of SPHK1 and LOX were assessed in lung tissues of human BPD using immunohistochemistry and quantified (Halo). In vivo studies were based on Sphk1-/- and matched wild type (WT) neonatal mice exposed to HO while treated with PF543, an inhibitor of SPHK1. In vitro mechanistic studies used human lung microvascular endothelial cells (HLMVECs). RESULTS: Both SPHK1 and LOX expressions were increased in lungs of patients with BPD. Tracheal aspirates from patients with BPD had increased LOX, correlating with sphingosine-1-phosphate (S1P) levels. HO-induced increase of LOX in lungs were attenuated in both Sphk1-/- and PF543-treated WT mice, accompanied by reduced collagen staining (sirius red). PF543 reduced LOX activity in both bronchoalveolar lavage fluid and supernatant of HLMVECs following HO. In silico analysis revealed STAT3 as a potential transcriptional regulator of LOX. In HLMVECs, following HO, ChIP assay confirmed increased STAT3 binding to LOX promoter. SPHK1 inhibition reduced phosphorylation of STAT3. Antibody to S1P and siRNA against SPNS2, S1P receptor 1 (S1P1) and STAT3 reduced LOX expression. CONCLUSION: HO-induced SPHK1/S1P signalling axis plays a critical role in transcriptional regulation of LOX expression via SPNS2, S1P1 and STAT3 in lung endothelium.


Assuntos
Hiperóxia , Lesão Pulmonar , Animais , Células Endoteliais , Humanos , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool) , Proteína-Lisina 6-Oxidase , Fator de Transcrição STAT3
10.
Development ; 146(15)2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31331942

RESUMO

Postnatal alveolar formation is the most important and the least understood phase of lung development. Alveolar pathologies are prominent in neonatal and adult lung diseases. The mechanisms of alveologenesis remain largely unknown. We inactivated Pdgfra postnatally in secondary crest myofibroblasts (SCMF), a subpopulation of lung mesenchymal cells. Lack of Pdgfra arrested alveologenesis akin to bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. The transcriptome of mutant SCMF revealed 1808 altered genes encoding transcription factors, signaling and extracellular matrix molecules. Elastin mRNA was reduced, and its distribution was abnormal. Absence of Pdgfra disrupted expression of elastogenic genes, including members of the Lox, Fbn and Fbln families. Expression of EGF family members increased when Tgfb1 was repressed in mouse. Similar, but not identical, results were found in human BPD lung samples. In vitro, blocking PDGF signaling decreased elastogenic gene expression associated with increased Egf and decreased Tgfb family mRNAs. The effect was reversible by inhibiting EGF or activating TGFß signaling. These observations demonstrate the previously unappreciated postnatal role of PDGFA/PDGFRα in controlling elastogenic gene expression via a secondary tier of signaling networks composed of EGF and TGFß.


Assuntos
Família de Proteínas EGF/metabolismo , Miofibroblastos/metabolismo , Alvéolos Pulmonares/embriologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Displasia Broncopulmonar/patologia , Proteínas de Ligação ao Cálcio/biossíntese , Diferenciação Celular/fisiologia , Células Cultivadas , Elastina/genética , Proteínas da Matriz Extracelular/biossíntese , Fibrilina-1/biossíntese , Humanos , Camundongos , Camundongos Knockout , Proteína-Lisina 6-Oxidase/biossíntese , RNA Mensageiro/genética , Fator de Crescimento Transformador beta1/biossíntese
11.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34446466

RESUMO

RATIONALE: Premature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive. Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental BPD. METHODS AND RESULTS: First, transcriptomic analysis with in silico cellular deconvolution identified a lung-intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A, Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly via Krüppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs. CONCLUSION: We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Hiperóxia/patologia , Interleucina-6/metabolismo , Pulmão , Macrófagos/metabolismo , Camundongos
12.
J Infect Dis ; 223(9): 1639-1649, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32926149

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is the leading cause of severe respiratory disease in infants. The causes and correlates of severe illness in the majority of infants are poorly defined. METHODS: We recruited a cohort of RSV-infected infants and simultaneously assayed the molecular status of their airways and the presence of airway microbiota. We used rigorous statistical approaches to identify gene expression patterns associated with disease severity and microbiota composition, separately and in combination. RESULTS: We measured comprehensive airway gene expression patterns in 106 infants with primary RSV infection. We identified an airway gene expression signature of severe illness dominated by excessive chemokine expression. We also found an association between Haemophilus influenzae, disease severity, and airway lymphocyte accumulation. Exploring the time of onset of clinical symptoms revealed acute activation of interferon signaling following RSV infection in infants with mild or moderate illness, which was absent in subjects with severe illness. CONCLUSIONS: Our data reveal that airway gene expression patterns distinguish mild/moderate from severe illness. Furthermore, our data identify biomarkers that may be therapeutic targets or useful for measuring efficacy of intervention responses.


Assuntos
Microbiota , Infecções por Vírus Respiratório Sincicial , Sistema Respiratório/metabolismo , Transcriptoma , Humanos , Lactente , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano , Sistema Respiratório/virologia , Índice de Gravidade de Doença
13.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L750-L763, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323115

RESUMO

It is well known that supplemental oxygen used to treat preterm infants in respiratory distress is associated with permanently disrupting lung development and the host response to influenza A virus (IAV). However, many infants who go home with normally functioning lungs are also at risk for hyperreactivity after a respiratory viral infection. We recently reported a new, low-dose hyperoxia mouse model (40% for 8 days; 40×8) that causes a transient change in lung function that resolves, rendering 40×8 adult animals functionally indistinguishable from room air controls. Here we report that when infected with IAV, 40×8 mice display an early transient activation of TGFß signaling and later airway hyperreactivity associated with peribronchial inflammation (profibrotic macrophages) and fibrosis compared with infected room air controls, suggesting neonatal oxygen induced hidden molecular changes that prime the lung for hyperreactive airways disease. Although searching for potential activators of TGFß signaling, we discovered that thrombospondin-1 (TSP-1) is elevated in naïve 40×8 mice compared with controls and localized to lung megakaryocytes and platelets before and during IAV infection. Elevated TSP-1 was also identified in human autopsy samples of former preterm infants with bronchopulmonary dysplasia. These findings reveal how low doses of oxygen that do not durably change lung function may prime it for hyperreactive airways disease by changing expression of genes, such as TSP-1, thus helping to explain why former preterm infants who have normal lung function are susceptible to airway obstruction and increased morbidity after viral infection.


Assuntos
Hiper-Reatividade Brônquica/patologia , Displasia Broncopulmonar/patologia , Hiperóxia/patologia , Infecções por Orthomyxoviridae/patologia , Fibrose Pulmonar/patologia , Trombospondina 1/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Cães , Feminino , Humanos , Vírus da Influenza A/imunologia , Influenza Humana/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/virologia , Fator de Crescimento Transformador beta/metabolismo
14.
Respir Res ; 22(1): 57, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596914

RESUMO

BACKGROUND: MicroRNA (miR) are small conserved RNA that regulate gene expression post-transcription. Previous genome-wide analysis studies in preterm infants indicate that pathways of miR 219-5p are important in infants with Bronchopulmonary Dysplasia (BPD). METHODS: Here we report a prospective cohort study of extremely preterm neonates wherein infants diagnosed with severe BPD expressed increased airway miR-219-5p and decreased platelet derived growth factor receptor alpha (PDGFR-α), a target of mir-219-5p and a key regulator of alveolarization, compared to post-conception age-matched term infants. RESULTS: miR-219-5p was highly expressed in the pulmonary epithelial lining in lungs of infants with BPD by in situ hybridization of human infant lungs. In both in vitro and in vivo (mouse) models of BPD, miR-219-5p was increased on exposure to hyperoxia compared with the normoxia control, with a complementary decrease of PDGFR-α. To further confirm the target relationship between miR-219 and PDGFR-α, pulmonary epithelial cells (MLE12) and lung primary fibroblasts were treated with a mimic of miR-219-5p and a locked nucleic acid (LNA) based inhibitor of miR-219-5p. In comparison with the control group, the level of miR-219 increased significantly after miR-219 mimic treatment, while the level of PDGFR-α declined markedly. LNA exposure increased PDGFR-α. Moreover, in BPD mouse model, over-expression of miR-219-5p inhibited alveolar development, indicated by larger alveolar spaces accompanied by reduced septation. CONCLUSIONS: Taken together, our results demonstrate that increased miR-219-5p contributes to the pathogenesis of BPD by targeting and reducing PDGFR-α. The use of specific miRNA antagonists may be a therapeutic strategy for preventing the development of BPD.


Assuntos
Displasia Broncopulmonar/metabolismo , MicroRNAs/biossíntese , Alvéolos Pulmonares/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/biossíntese , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/terapia , Estudos de Coortes , Pressão Positiva Contínua nas Vias Aéreas/métodos , Humanos , Recém-Nascido , Recém-Nascido Prematuro/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Alvéolos Pulmonares/patologia
15.
J Med Genet ; 57(5): 296-300, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31662342

RESUMO

BACKGROUND: Alveolar capillary dysplasia with misalignment of the pulmonary veins (ACDMPV) is a lethal disorder of lung development. ACDMPV is associated with haploinsufficiency of the transcription factor FOXF1, which plays an important role in the development of the lung and intestine. CNVs upstream of the FOXF1 gene have also been associated with an ACDMPV phenotype, but mechanism(s) by which these deletions disrupt lung development are not well understood. The objective of our study is to gain insights into the mechanisms by which CNVs contribute to an ACDMPV phenotype. METHODS: We analysed primary lung tissue from an infant with classic clinical and histological findings of ACDMPV and harboured a 340 kb deletion on chromosome 16q24.1 located 250 kb upstream of FOXF1. RESULTS: In RNA generated from paraffin-fixed lung sections, our patient had lower expression of FOXF1 than age-matched controls. He also had an abnormal pattern of FOXF1 protein expression, with a dramatic loss of FOXF1 expression in the lung. To gain insights into the mechanisms underlying these changes, we assessed the epigenetic landscape using chromatin immunoprecipitation, which demonstrated loss of histone H3 lysine 27 acetylation (H3K27Ac), an epigenetic mark of active enhancers, in the region of the deletion. CONCLUSIONS: Together, these data suggest that the deletion disrupts an enhancer responsible for directing FOXF1 expression in the developing lung and provide novel insights into the mechanisms underlying a fatal developmental lung disorder.


Assuntos
Fatores de Transcrição Forkhead/genética , Predisposição Genética para Doença , Pulmão/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Cromossomos Humanos Par 16/genética , Elementos Facilitadores Genéticos/genética , Deleção de Genes , Regulação da Expressão Gênica/genética , Haploinsuficiência/genética , Humanos , Lactente , Recém-Nascido , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Síndrome da Persistência do Padrão de Circulação Fetal/patologia
16.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L670-L674, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878480

RESUMO

The severity of coronavirus disease 2019 (COVID-19) is linked to an increasing number of risk factors, including exogenous (environmental) stimuli such as air pollution, nicotine, and cigarette smoke. These three factors increase the expression of angiotensin I converting enzyme 2 (ACE2), a key receptor involved in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the etiological agent of COVID-19-into respiratory tract epithelial cells. Patients with severe COVID-19 are managed with oxygen support, as are at-risk individuals with chronic lung disease. To date, no study has examined whether an increased fraction of inspired oxygen (FiO2) may affect the expression of SARS-CoV-2 entry receptors and co-receptors, including ACE2 and the transmembrane serine proteases TMPRSS1, TMPRSS2, and TMPRSS11D. To address this, steady-state mRNA levels for genes encoding these SARS-CoV-2 receptors were assessed in the lungs of mouse pups chronically exposed to elevated FiO2, and in the lungs of preterm-born human infants chronically managed with an elevated FiO2. These two scenarios served as models of chronic elevated FiO2 exposure. Additionally, SARS-CoV-2 receptor expression was assessed in primary human nasal, tracheal, esophageal, bronchial, and alveolar epithelial cells, as well as primary mouse alveolar type II cells exposed to elevated oxygen concentrations. While gene expression of ACE2 was unaffected, gene and protein expression of TMPRSS11D was consistently upregulated by exposure to an elevated FiO2. These data highlight the need for further studies that examine the relative contribution of the various viral co-receptors on the infection cycle, and point to oxygen supplementation as a potential risk factor for COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Proteínas de Membrana/metabolismo , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Mucosa Respiratória/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Células Epiteliais Alveolares/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus , COVID-19 , Células Cultivadas , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/administração & dosagem , Oxigênio/análise , Pandemias , Receptores Virais/metabolismo , Fatores de Risco , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Proteases/genética , Índice de Gravidade de Doença
17.
J Pediatr ; 223: 20-28.e2, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32711747

RESUMO

OBJECTIVE: To evaluate the predictive value of cumulative oxygen exposure thresholds over the first 2 postnatal weeks, linking them to bronchopulmonary dysplasia (BPD) and 1-year pulmonary morbidity and lung function in extremely low gestational age newborns. STUDY DESIGN: Infants (N = 704) enrolled in the Prematurity and Respiratory Outcomes Program, a multicenter prospective cohort study, that survived to discharge were followed through their neonatal intensive care unit hospitalization to 1-year corrected age. Cumulative oxygen exposure (OxygenAUC14) thresholds were derived from univariate models of BPD, stratifying infants into high-, intermediate-, and low-oxygen exposure groups. These groups were then used in multivariate logistic regressions to prospectively predict post-prematurity respiratory disease (PRD), respiratory morbidity score (RMS) in the entire cohort, and pulmonary function z scores (N = 108 subset of infants) at 1-year corrected age. RESULTS: Over the first 14 postnatal days, infants exposed to high oxygen averaged ≥33.1% oxygen, infants exposed to intermediate oxygen averaged 29.1%-33.1%, and infants exposed to low oxygen were below both cutoffs. In multivariate models, infants exposed to high oxygen showed increased PRD and RMS, whereas infants exposed to intermediate oxygen demonstrated increased moderate/severe RMS. Infants in the high/intermediate groups had decreased forced expiratory volume at 0.5 seconds/forced vital capacity ratio. CONCLUSIONS: OxygenAUC14 establishes 3 thresholds of oxygen exposure that risk stratify infants early in their neonatal course, thereby predicting short-term (BPD) and 1-year (PRD, RMS) respiratory morbidity. Infants with greater OxygenAUC14 have altered pulmonary function tests at 1 year of age, indicating early evidence of obstructive lung disease and flow limitation, which may predispose extremely low gestational age newborns to increased long-term pulmonary morbidity. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01435187.


Assuntos
Displasia Broncopulmonar/etiologia , Oxigênio/efeitos adversos , Respiração Artificial/efeitos adversos , Displasia Broncopulmonar/fisiopatologia , Feminino , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal/estatística & dados numéricos , Masculino , Oxigênio/administração & dosagem , Estudos Prospectivos , Respiração Artificial/métodos , Respiração Artificial/mortalidade , Testes de Função Respiratória , Índice de Gravidade de Doença , Capacidade Vital
18.
Pediatr Res ; 87(5): 862-867, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31726465

RESUMO

BACKGROUND: Data on the host factors that contribute to infection of young children by respiratory syncytial virus (RSV) are limited. The human chemokine receptor, CX3CR1, has recently been implicated as an RSV receptor. Here we evaluate a role for CX3CR1 in pediatric lung RSV infections. METHODS: CX3CR1 transcript levels in the upper and lower pediatric airways were assessed. Tissue localization and cell-specific expression was confirmed using in situ hybridization and immunohistochemistry. The role of CX3CR1 in RSV infection was also investigated using a novel physiological model of pediatric epithelial cells. RESULTS: Low levels of CX3CR1 transcript were often, but not always, expressed in both upper (62%) and lower airways (36%) of pediatric subjects. CX3CR1 transcript and protein expression was detected in epithelial cells of normal human pediatric lung tissues. CX3CR1 expression was readily detected on primary cultures of differentiated pediatric/infant human lung epithelial cells. RSV demonstrated preferential infection of CX3CR1-positive cells, and blocking CX3CR1/RSV interaction significantly decreased viral load. CONCLUSION: CX3CR1 is present in the airways of pediatric subjects where it may serve as a receptor for RSV infection. Furthermore, CX3CR1 appears to play a mechanistic role in mediating viral infection of pediatric airway epithelial cells in vitro.


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Receptores Virais/fisiologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Linhagem Celular , Criança , Pré-Escolar , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Lactente , Recém-Nascido , Pulmão/metabolismo , Pulmão/virologia , Vírus Sincicial Respiratório Humano , Viroses
19.
Pediatr Res ; 87(3): 511-517, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30776794

RESUMO

BACKGROUND: Current in vitro human lung epithelial cell models derived from adult tissues may not accurately represent all attributes that define homeostatic and disease mechanisms relevant to the pediatric lung. METHODS: We report methods for growing and differentiating primary Pediatric Human Lung Epithelial (PHLE) cells from organ donor infant lung tissues. We use immunohistochemistry, flow cytometry, quantitative RT-PCR, and single cell RNA sequencing (scRNAseq) analysis to characterize the cellular and transcriptional heterogeneity of PHLE cells. RESULTS: PHLE cells can be expanded in culture up to passage 6, with a doubling time of ~4 days, and retain attributes of highly enriched epithelial cells. PHLE cells can form resistant monolayers, and undergo differentiation when placed at air-liquid interface. When grown at Air-Liquid Interface (ALI), PHLE cells expressed markers of airway epithelial cell lineages. scRNAseq suggests the cultures contained 4 main sub-phenotypes defined by expression of FOXJ1, KRT5, MUC5B, and SFTPB. These cells are available to the research community through the Developing Lung Molecular Atlas Program Human Tissue Core. CONCLUSION: Our data demonstrate that PHLE cells provide a novel in vitro human cell model that represents the pediatric airway epithelium, which can be used to study perinatal developmental and pediatric disease mechanisms.


Assuntos
Separação Celular , Células Epiteliais/fisiologia , Pulmão/citologia , Doadores de Tecidos , Fatores Etários , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Queratina-5/genética , Queratina-5/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Fenótipo , Cultura Primária de Células , Proteína B Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/metabolismo , RNA-Seq , Análise de Célula Única
20.
Am J Respir Cell Mol Biol ; 60(3): 308-322, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281332

RESUMO

Hyperoxia-induced injury to the developing lung, impaired alveolarization, and dysregulated vascularization are critical factors in the pathogenesis of bronchopulmonary dysplasia (BPD); however, mechanisms for hyperoxia-induced development of BPD are not fully known. In this study, we show that TREM-1 (triggering receptor expressed on myeloid cells 1) is upregulated in hyperoxia-exposed neonatal murine lungs as well as in tracheal aspirates and lungs of human neonates with respiratory distress syndrome and BPD as an adaptive response to survival in hyperoxia. Inhibition of TREM-1 function using an siRNA approach or deletion of the Trem1 gene in mice showed enhanced lung inflammation, alveolar damage, and mortality of hyperoxia-exposed neonatal mice. The treatment of hyperoxia-exposed neonatal mice with agonistic TREM-1 antibody decreased lung inflammation, improved alveolarization, and was associated with diminished necroptosis-regulating protein RIPK3 (receptor-interacting protein kinase 3). Mechanistically, we show that TREM-1 activation alleviates lung inflammation and improves alveolarization through downregulating RIPK3-mediated necroptosis and NLRP3 (nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3) inflammasome activation in hyperoxia-exposed neonatal mice. These data show that activating TREM-1, enhancing angiopoietin 1 signaling, or blocking the RIPK3-mediated necroptosis pathway may be used in new therapeutic interventions to control adverse effects of hyperoxia in the development of BPD.


Assuntos
Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Necroptose/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/metabolismo , Regulação para Baixo/fisiologia , Humanos , Recém-Nascido , Inflamassomos/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA