Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(1): 466-471, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150569

RESUMO

Contemporary quantum plasmonics capture subtle corrections to the properties of plasmonic nano-objects in equilibrium. Here, we demonstrate non-equilibrium spill-out redistribution of the electronic density at the ultrafast time scale. As revealed by time-resolved 2D spectroscopy of nanoplasmonic Fe/Au bilayers, an injection of the laser-excited non-thermal electrons induces transient electron spill-out thus changing the plasma frequency. The response of the local electronic density switches the electronic density behavior from spill-in to strong (an order of magnitude larger) spill-out at the femtosecond time scale. The superdiffusive transport of hot electrons and the lack of a direct laser heating indicate significantly non-thermal origin of the underlying physics. Our results demonstrate an ultrafast and non-thermal way to control surface plasmon dispersion through transient variations of the spatial electron distribution at the nanoscale. These findings expand quantum plasmonics into previously unexplored directions by introducing ultrashort time scales in the non-equilibrium electronic systems.

2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982758

RESUMO

The aim of this project is to fabricate hydrogen-rich silicone doped with magnetic nanoparticles for use as a temperature change indicator in magnetic resonance imaging-guided (MRIg) thermal ablations. To avoid clustering, the particles of mixed MnZn ferrite were synthesized directly in a medical-grade silicone polymer solution. The particles were characterized by transmission electron microscopy, powder X-ray diffraction, soft X-ray absorption spectroscopy, vibrating sample magnetometry, temperature-dependent nuclear magnetic resonance relaxometry (20 °C to 60 °C, at 3.0 T), and magnetic resonance imaging (at 3.0 T). Synthesized nanoparticles were the size of 4.4 nm ± 2.1 nm and exhibited superparamagnetic behavior. Bulk silicone material showed a good shape stability within the study's temperature range. Embedded nanoparticles did not influence spin-lattice relaxation, but they shorten the longer component of spin-spin nuclear relaxation times of silicone's protons. However, these protons exhibited an extremely high r2* relaxivity (above 1200 L s-1 mmol-1) due to the presence of particles, with a moderate decrease in the magnetization with temperature. With an increased temperature decrease of r2*, this ferro-silicone can be potentially used as a temperature indicator in high-temperature MRIg ablations (40 °C to 60 °C).


Assuntos
Manganês , Nanopartículas , Prótons , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Zinco/química
3.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003646

RESUMO

Mixed manganese-zinc ferrite nanoparticles coated with PEG were studied for their potential usefulness in MRI thermometry as temperature-sensitive contrast agents. Particles in the form of an 8.5 nm core coated with a 3.5 nm layer of PEG were fabricated using a newly developed, one-step method. The composition of Mn0.48Zn0.46Fe2.06O4 was found to have a strong thermal dependence of magnetization in the temperature range between 5 and 50 °C. Nanoparticles suspended in an agar gel mimicking animal tissue and showing non-significant impact on cell viability in the biological test were studied with NMR and MRI over the same temperature range. For the concentration of 0.017 mg/mL of Fe, the spin-spin relaxation time T2 increased from 3.1 to 8.3 ms, while longitudinal relaxation time T1 shows a moderate decrease from 149.0 to 125.1 ms. A temperature map of the phantom exposed to the radial temperature gradient obtained by heating it with an 808 nm laser was calculated from T2 weighted spin-echo differential MR images. Analysis of temperature maps yields thermal/spatial resolution of 3.2 °C at the distance of 2.9 mm. The experimental relaxation rate R2 data of water protons were compared with those obtained from calculations using a theoretical model incorporating the motion averaging regime.


Assuntos
Meios de Contraste , Nanopartículas , Animais , Temperatura , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Água , Nanopartículas/química
4.
Sensors (Basel) ; 20(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481762

RESUMO

Soft magnetic composite (SMC) materials made of iron powder are more frequently used in construction of electric actuators and motors because of their advantages with respect to Fe-Si electric steel sheets and because they have almost no powder loss. The study deals with measurements of temperature and torque of a low-power rotary switched reluctance actuator, with reference to a commercial actuator and a prototype actuator characterized by stator and rotor cores made of soft magnetic composite materials. Further power loss analysis was also conducted. To assess the actuators, magnetization characteristics and iron loss vs. magnetic flux density at a given frequency were measured according to IEC standards. Results show that the actuator made of soft magnetic composites exhibits higher efficiency and a lower temperature rise of stator and windings in comparison with the commercial actuator.

5.
Nano Lett ; 19(10): 7144-7148, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31469963

RESUMO

The successful synthesis of one-dimensional nanostructures of a narrow band gap semiconductor, exhibiting a ferromagnetic response at room temperature, is reported. High-quality nanowires of InSb-Mn have been produced by template-assisted pulse electrodeposition. Detailed structural and spectroscopic characterizations revealed good crystallinity, a narrow size distribution of the nanostructures, and the ability to control the Mn doping level. The dominating magnetic response at a cryogenic temperature evolves with an increasing Mn concentration from paramagnetic through antiferromagnetic to ferromagnetic. A robust ferromagnetic response of InSb nanowires doped with 2.5% at. of Mn is retained up to a Curie temperature of nearly 500 K.

6.
Chemphyschem ; 19(13): 1617-1626, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29633465

RESUMO

The growing demand for clean energy catalyzes the development of new devices capable of generating electricity from renewable energy resources. One of the possible approaches focuses on the use of thermoelectric materials (TE), which may utilize waste heat, water, and solar thermal energy to generate electrical power. An improvement of the performance of such devices may be achieved through the development of composites made of an organic matrix filled with nanostructured thermoelectric materials working in a synergetic way. The first step towards such designs requires a better understanding of the fundamental interactions between available materials. In this paper, this matter is investigated and the questions regarding the change of electrical and thermal properties of nanocomposites based on low-conductive polypyrrole enriched with bismuth nanowires of well-defined geometry and morphology is answered. It is clearly demonstrated that the electrical conductivity and the Seebeck coefficient may be tuned either simultaneously or separately within particular Bi NWs content ranges, and that both parameters may be increased at the same time.

7.
Phys Chem Chem Phys ; 18(36): 25221-25229, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711457

RESUMO

The maximum magnetisation (saturation magnetisation) obtainable for iron oxide nanoparticles can be increased by doping the nanocrystals with non-magnetic elements such as zinc. Herein, we closely study how only slightly different synthesis approaches towards such doped nanoparticles strongly influence the resulting sub-nano/atomic structure. We compare two co-precipitation approaches, where we only vary the base (NaOH versus NH3), and a thermal decomposition route. These methods are the most commonly applied ones for synthesising doped iron oxide nanoparticles. The measurable magnetisation change upon zinc doping is about the same for all systems. However, the sub-nano structure, which we studied with Mössbauer and X-ray absorption near edge spectroscopy, differs tremendously. We found evidence that a much more complex picture has to be drawn regarding what happens upon Zn doping compared to what textbooks tell us about the mechanism. Our work demonstrates that it is crucial to study the obtained structures very precisely when "playing" with the atomic order in iron oxide nanocrystals.

8.
Phys Chem Chem Phys ; 18(22): 15091-101, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27197089

RESUMO

It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface.

9.
Sensors (Basel) ; 16(4)2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27110783

RESUMO

Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.

10.
Acta Crystallogr A Found Adv ; 80(Pt 1): 104-111, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031931

RESUMO

It is demonstrated that Kikuchi features become clearly visible if reflection high-energy electron diffraction (RHEED) patterns are filtered using digital image processing software. The results of such pattern transformations are shown for SrTiO3 with mixed surface termination for data collected at different azimuths of the incident electron beam. A simplified analytical approach for the theoretical description of filtered Kikuchi patterns is proposed and discussed. Some examples of raw and filtered patterns for thin films are shown. RHEED patterns may be treated as a result of coherent and incoherent scattering of electron waves. The effects of coherent scattering may be considered as those occurring due to wave diffraction by an idealized crystal and, usually, only effects of this type are analysed to obtain structural information on samples investigated with the use of RHEED. However, some incoherent scattering effects mostly caused by thermal vibrations of atoms, known as Kikuchi effects, may also be a source of valuable information on the arrangements of atoms near the surface. Typically, for the case of RHEED, Kikuchi features are hidden in the intensity background and researchers cannot easily recognize them. In this paper, it is shown that the visibility of features of this type can be substantially enhanced using computer graphics methods.

11.
Nano Lett ; 12(3): 1437-42, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22300444

RESUMO

It is demonstrated that a charge-trapping layer placed in proximity to a ferromagnetic metal enables efficient electrical and optical control of the metal's magnetic properties. Retention of charge trapped inside the charge-trapping layer provides nonvolatility to the magnetoelectric effect and enhances its efficiency by an order of magnitude. As such, an engineered charge-trapping layer can be used to realize the magnetoelectric equivalent to today's pervasive charge trap flash memory technology. Moreover, by supplying trapped charges optically instead of electrically, a focused laser beam can be used to imprint the magnetic state into a continuous metal film.


Assuntos
Dispositivos de Armazenamento em Computador , Capacitância Elétrica , Imãs , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Eletricidade Estática , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
12.
Magn Reson Imaging ; 100: 43-54, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36933774

RESUMO

This study provides insight into the advantages and disadvantages of using ferrite particles embedded in agar gel phantoms as MRI temperature indicators for low-magnetic field scanners. We compare the temperature-dependent intensity of MR images at low-field (0.2 T) to those at high-field (3.0 T). Due to a shorter T1 relaxation time at low-fields, MRI scanners operating at 0.2 T can use shorter repetition times and achieve a significant T2⁎ weighting, resulting in strong temperature-dependent changes of MR image brightness in short acquisition times. Although the signal-to-noise ratio for MR images at 0.2 T MR is much lower than at 3.0 T, it is sufficient to achieve a temperature measurement uncertainty of about ±1.0 °C at 37 °C for a 90 µg/mL concentration of magnetic particles.


Assuntos
Imageamento por Ressonância Magnética , Termometria , Imageamento por Ressonância Magnética/métodos , Termometria/métodos , Temperatura Corporal , Temperatura , Razão Sinal-Ruído , Imagens de Fantasmas
13.
Chem Mater ; 34(9): 4001-4018, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35573108

RESUMO

Superparamagnetic ferrite nanoparticles coated with a polymer layer are widely used for biomedical applications. The objective of this work is to design nanoparticles as a magnetic resonance imaging (MRI) temperature-sensitive contrast agent. Copper-zinc ferrite nanoparticles coated with a poly(ethylene glycol) (PEG) layer are synthesized using a one-step thermal decomposition method in a polymer matrix. The resulting nanoparticles are stable in water and biocompatible. Using Mössbauer spectroscopy and magnetometry, it was determined that the grown nanoparticles exhibit superparamagnetic properties. Embedding these particles into an agarose gel resulted in significant modification of water proton relaxation times T 1, T 2, and T 2* determined by nuclear magnetic resonance measurements. The results of the spin-echo T 2-weighted MR images of an aqueous phantom with embedded Cu0.08Zn0.54Fe2.38O4 nanoparticles in the presence of a strong temperature gradient show a strong correlation between the temperature and the image intensity. The presented results support the hypothesis that CuZn ferrite nanoparticles can be used as a contrast agent for MRI thermometry.

14.
Materials (Basel) ; 15(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35329534

RESUMO

We present STM/STS, ARPES and magnetotransport studies of the surface topography and electronic structure of pristine Bi2Se3 in comparison to Bi1.96Mg0.04Se3 and Bi1.98Fe0.02Se3. The topography images reveal a large number of complex, triangle-shaped defects at the surface. The local electronic structure of both the defected and non-defected regions is examined by STS. The defect-related states shift together with the Dirac point observed in the undefected area, suggesting that the local electronic structure at the defects is influenced by doping in the same way as the electronic structure of the undefected surface. Additional information about the electronic structure of the samples is provided by ARPES, which reveals the dependence of the bulk and surface electronic bands on doping, including such parameters as the Fermi wave vector. The subtle changes of the surface electronic structure by doping are verified with magneto-transport measurements at low temperatures (200 mK) allowing the detection of Shubnikov-de Haas (SdH) quantum oscillations.

15.
Materials (Basel) ; 14(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205158

RESUMO

The process of preparation of nanostructured thin films in high vacuum can be monitored with the help of reflection high energy diffraction (RHEED). However, RHEED patterns, both observed or recorded, need to be interpreted. The simplest approaches are based on carrying out the Ewald construction for a set of rods perpendicular to the crystal surface. This article describes how the utilization of computer graphics may be useful for realistic reproduction of experimental conditions, and then for carrying out the Ewald construction in a reciprocal 3D space. The computer software was prepared in the Java programing language. The software can be used to interpret real diffractions patterns for relatively flat surfaces, and thus it may be helpful in broad research practice.

16.
Materials (Basel) ; 14(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34832477

RESUMO

In this study, electron diffraction patterns observed under high vacuum conditions for an SrTiO3 surface were interpreted in detail while paying special attention to the features of inelastic effects. The surface of the SrTiO2 was carefully prepared to enforce its termination with single domains of TiO2 layers at the top. The inelastic patterns were interpreted using analytical models. Two types of Kikuchi lines are recognized in this paper: those which can be described with the Bragg law and those which appear due to surface wave resonance effects. However, we also discuss that there exists a formal connection between the two types of the Kikuchi lines observed.

17.
Materials (Basel) ; 13(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957740

RESUMO

Changes in stoichiometry, temperature, strain and other parameters dramatically alter properties of LSMO perovskite. Thus, the sensitivity of LSMO may enable control of the magnetic properties of the film. This work demonstrates the capabilities of interface engineering to achieve the desired effects. Three methods of preparing STO substrates were conducted, i.e., using acid, buffer solution, and deionized water. The occurrence of terraces and their morphology depend on the preparation treatment. Terraces propagate on deposited layers and influence LSMO properties. The measurements show that anisotropy depends on the roughness of the substrate, the method of preparing the substrate, and oxygen treatment. The collected results suggest that the dipolar mechanism may be the source of LSMO anisotropy.

18.
J Phys Condens Matter ; 28(42): 425001, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27589202

RESUMO

The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy.

19.
Phys Rev Lett ; 96(25): 257205, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16907340

RESUMO

We grew tetragonally distorted FexCo1-x alloy films on Pd(001). Theoretical first-principles calculations for such films predicted a high saturation magnetization and a high uniaxial magnetic anisotropy energy for specific values of the lattice distortion c/a and the alloy composition x. The magnetic anisotropy was investigated using the magneto-optical Kerr effect. An out-of-plane easy axis of magnetization was observed for Fe0.5Co0.5 films in the thickness range of 4 to 14 monolayers. The magnetic anisotropy energy induced by the tetragonal distortion is estimated to be almost 2 orders of magnitude larger than the value for bulk FeCo alloys. Using LEED Kikuchi patterns, a change of the easy axis of magnetization can be related to a decrease of the tetragonal distortion with thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA