Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Mol Ther ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342429

RESUMO

Mucopolysaccharidoses (MPSs) are childhood diseases caused by inherited deficiencies in glycosaminoglycan degradation. Most MPSs involve neurodegeneration, which to date is untreatable. Currently, most therapeutic strategies aim at correcting the primary genetic defect. Among these strategies, gene therapy has shown great potential, although its clinical application is challenging. We have shown previously in an MPS-IIIA mouse model that the molecular tweezer (MT) CLR01, a potent, broad-spectrum anti-amyloid small molecule, inhibits secondary amyloid storage, facilitates amyloid clearance, and protects against neurodegeneration. Here, we demonstrate that combining CLR01 with adeno-associated virus (AAV)-mediated gene therapy, targeting both the primary and secondary pathologic storage in MPS-IIIA mice, results in a synergistic effect that improves multiple therapeutic outcomes compared to each monotherapy. Moreover, we demonstrate that CLR01 is effective therapeutically in mouse models of other forms of neuronopathic MPS, MPS-I, and MPS-IIIC. These strongly support developing MTs as an effective treatment option for neuronopathic MPSs, both on their own and in combination with gene therapy, to improve therapeutic efficacy and translation into clinical application.

2.
Exp Eye Res ; 229: 109433, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858249

RESUMO

Heparan-α-glucosaminide N-acetyltransferase (HGSNAT) participates in lysosomal degradation of heparan sulfate. Mutations in the gene encoding this enzyme cause mucopolysaccharidosis IIIC (MPS IIIC) or Sanfilippo syndrome type C. MPS IIIC patients exhibit progressive neurodegeneration, leading to dementia and death in early adulthood. Currently there is no approved treatment for MPS IIIC. Incidences of non-syndromic retinitis pigmentosa and early signs of night blindness are reported in some MPS IIIC patients, however the majority of ocular phenotypes are not well characterized. The goal of this study was to investigate retinal degeneration phenotype in the Hgsnat knockout mouse model of MPS IIIC and a cadaveric human MPS IIIC eye. Cone and rod photoreceptors in the eyes of homozygous 6-month-old Hgsnat knockout mice and their wild-type counterparts were analyzed using cone arrestin, S-opsin, M-opsin and rhodopsin antibodies. Histological observation was performed on the eye from a 35-year-old MPS IIIC donor. We observed a nearly 50% reduction in the rod photoreceptors density in the Hgsnat knockout mice compared to the littermate wild-type controls. Cone photoreceptor density was unaltered at this age. Severe retinal degeneration was also observed in the MPS IIIC donor eye. To our knowledge, this is the first report characterizing ocular phenotypes arising from deleterious variants in the Hgsnat gene associated with MPS IIIC clinical phenotype. Our findings indicate retinal manifestations may be present even before behavioral manifestations. Thus, we speculate that ophthalmological evaluations could be used as diagnostic indicators of early disease, progression, and end-point evaluation for future MPS IIIC therapies.


Assuntos
Mucopolissacaridose III , Degeneração Retiniana , Retinose Pigmentar , Animais , Camundongos , Humanos , Adulto , Lactente , Mucopolissacaridose III/genética , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/patologia , Degeneração Retiniana/genética , Mutação , Camundongos Knockout , Acetiltransferases/genética
3.
FASEB J ; 36(5): e22285, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363389

RESUMO

The processes of activation, extravasation, and migration of immune cells to a site are early and essential steps in the induction of an acute inflammatory response. These events are an essential part of the inflammatory cascade, which involves multiple regulatory steps. Using a murine air pouch model of inflammation with LPS as an inflammation inducer, we demonstrate that isoenzymes of the neuraminidase family (NEU1, 3, and 4) play essential roles in these processes by acting as positive or negative regulators of leukocyte infiltration. In genetically knocked-out (KO) mice for different NEU genes (Neu1 KO, Neu3 KO, Neu4 KO, and Neu3/4 double KO mice) with LPS-induced air pouch inflammation, leukocytes at the site of inflammation were counted, and the inflamed tissue was analyzed using immunohistochemistry. Our data show that leukocyte recruitment was decreased in NEU1- and NEU3-deficient mice, while it was increased in NEU4-deficient animals. Consistent with these results, systemic as well as pouch exudate levels of pro-inflammatory cytokines were reduced in Neu1 and increased in Neu4 KO mice. Pharmacological inhibitors specific for NEU1, NEU3, and NEU4 isoforms also affected leukocyte recruitment. Together our data demonstrate that NEU isoenzymes have distinct-and even opposing-effects on leukocyte recruitment, and therefore warrant further investigation to determine their mechanisms and importance as regulators of the inflammatory cascade.


Assuntos
Isoenzimas , Neuraminidase , Animais , Citocinas , Inflamação , Isoenzimas/genética , Leucócitos , Camundongos , Neuraminidase/genética
4.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093427

RESUMO

Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of α-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of ß-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Catepsina B/metabolismo , Córtex Cerebral/metabolismo , Mucopolissacaridose I/metabolismo , Células Piramidais/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Catepsina B/genética , Córtex Cerebral/patologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Knockout , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Células Piramidais/patologia
5.
Hum Mutat ; 40(8): 1084-1100, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31228227

RESUMO

Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe, rare autosomal recessive disorder caused by variants in the heparan-α-glucosaminide N-acetyltransferase (HGSNAT) gene which result in lysosomal accumulation of heparan sulfate. We analyzed clinical presentation, molecular defects and their haplotype context in 78 (27 novel) MPSIIIC cases from 22 countries, the largest group studied so far. We describe for the first time disease-causing variants in the patients from Brazil, Algeria, Azerbaijan, and Iran, and extend their spectrum within Canada, Colombia, Turkey, and the USA. Six variants are novel: two missense, c.773A>T/p.N258I and c.1267G>T/p.G423W, a nonsense c.164T>A/p.L55*, a splice-site mutation c.494-1G>A/p.[P165_L187delinsQSCYVTQAGVRWHHLGSLQALPPGFTPFSYLSLLSSWNC,P165fs], a deletion c.1348delG/p.(D450fs) and an insertion c.1479dupA/p.(Leu494fs). The missense HGSNAT variants lacked lysosomal targeting, enzymatic activity, and likely the correct folding. The haplotype analysis identified founder mutations, p.N258I, c.525dupT, and p.L55* in the Brazilian state of Paraiba, c.493+1G>A in Eastern Canada/Quebec, p.A489E in the USA, p.R384* in Poland, p.R344C and p.S518F in the Netherlands and suggested that variants c.525dupT, c.372-2G>A, and c.234+1G>A present in cis with c.564-98T>C and c.710C>A rare single-nucleotide polymorphisms, have been introduced by Portuguese settlers in Brazil. Altogether, our results provide insights into the origin, migration roots and founder effects of HGSNAT disease-causing variants, and reveal the evolutionary history of MPSIIIC.


Assuntos
Acetiltransferases/genética , Mucopolissacaridose III/genética , Mutação , Acetiltransferases/química , Argélia , Animais , Azerbaijão , Brasil , Células COS , Canadá , Chlorocebus aethiops , Colômbia , Evolução Molecular , Feminino , Efeito Fundador , Haplótipos , Humanos , Irã (Geográfico) , Masculino , Países Baixos , Linhagem , Filogeografia , Polônia , Dobramento de Proteína
6.
J Neuroinflammation ; 15(1): 336, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518374

RESUMO

BACKGROUND: The extension of sepsis encompassing the preterm newborn's brain is often overlooked due to technical challenges in this highly vulnerable population, yet it leads to substantial long-term neurodevelopmental disabilities. In this study, we demonstrate how neonatal neuroinflammation following postnatal E. coli lipopolysaccharide (LPS) exposure in rat pups results in persistent reduction in sialylation of cerebral glycoproteins. METHODS: Male Sprague-Dawley rat pups at postnatal day 3 (P3) were injected in the corpus callosum with saline or LPS. Twenty-four hours (P4) or 21 days (P24) following injection, brains were extracted and analyzed for neuraminidase activity and expression as well as for sialylation of cerebral glycoproteins and glycolipids. RESULTS: At both P4 and P24, we detected a significant increase of the acidic neuraminidase activity in LPS-exposed rats. It correlated with significantly increased neuraminidase 1 (Neu1) mRNA in LPS-treated brains at P4 and with neuraminidases 1 and 4 at P24 suggesting that these enzymes were responsible for the rise of neuraminidase activity. At both P4 and P24, sialylation of N-glycans on brain glycoproteins decreased according to both mass-spectrometry analysis and lectin blotting, but the ganglioside composition remained intact. Finally, at P24, analysis of brain tissues by immunohistochemistry showed that neurons in the upper layers (II-III) of somatosensory cortex had a reduced surface content of polysialic acid. CONCLUSIONS: Together, our data demonstrate that neonatal LPS exposure results in specific and sustained induction of Neu1 and Neu4, causing long-lasting negative changes in sialylation of glycoproteins on brain cells. Considering the important roles played by sialoglycoproteins in CNS function, we speculate that observed re-programming of the brain sialome constitutes an important part of pathophysiological consequences in perinatal infectious exposure.


Assuntos
Córtex Cerebral/metabolismo , Encefalite/patologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteínas/metabolismo , Neuraminidase/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Córtex Cerebral/efeitos dos fármacos , Corpo Caloso/efeitos dos fármacos , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Lectinas/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Neuraminidase/genética , Fosfopiruvato Hidratase/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ácidos Siálicos/metabolismo
7.
Mol Genet Metab ; 125(4): 322-331, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30145178

RESUMO

Mucopolysaccharidosis (MPS) disorders are caused by deficiencies in lysosomal enzymes, leading to impaired glycosaminoglycan (GAG) degradation. The resulting GAG accumulation in cells and connective tissues ultimately results in widespread tissue and organ dysfunction. The seven MPS types currently described are heterogeneous and progressive disorders, with somatic and neurological manifestations depending on the type of accumulating GAG. Heparan sulfate (HS) is one of the GAGs stored in patients with MPS I, II, and VII and the main GAG stored in patients with MPS III. These disorders are associated with significant central nervous system (CNS) abnormalities that can manifest as impaired cognition, hyperactive and/or aggressive behavior, epilepsy, hydrocephalus, and sleeping problems. This review discusses the anatomical and pathophysiological CNS changes accompanying HS accumulation as well as the mechanisms believed to cause CNS abnormalities in MPS patients. The content of this review is based on presentations and discussions on these topics during a meeting on the brain in MPS attended by an international group of MPS experts.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/etiologia , Epilepsia/etiologia , Heparitina Sulfato/metabolismo , Mucopolissacaridoses/complicações , Disfunção Cognitiva/patologia , Epilepsia/patologia , Humanos
8.
FASEB J ; 31(8): 3467-3483, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28442549

RESUMO

Gangliosides (sialylated glycolipids) play an essential role in the CNS by regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in the development of severe neurologic disorders, including gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that 2 mammalian enzymes, neuraminidases 3 and 4, play important roles in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In neuraminidase 3 and 4 double-knockout mice, GM3 ganglioside is stored in microglia, vascular pericytes, and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies, and memory loss, whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro Double-knockout mice also have reduced levels of GM1 ganglioside and myelin in neuronal axons. Furthermore, neuraminidase 3 deficiency drastically increased storage of GM2 in the brain tissues of an asymptomatic mouse model of Tay-Sachs disease, a severe human gangliosidosis, indicating that this enzyme is responsible for the metabolic bypass of ß-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies.-Pan, X., De Britto Pará De Aragão, C., Velasco-Martin, J. P., Priestman, D. A., Wu, H. Y., Takahashi, K., Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F. M., Lamarche-Vane, N., Morales, C. R., Miyagi, T., Pshezhetsky, A. V. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides.


Assuntos
Encéfalo/metabolismo , Gangliosídeos/metabolismo , Neuraminidase/metabolismo , Neurônios/fisiologia , Animais , Encéfalo/patologia , Células Cultivadas , Embrião de Mamíferos , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Mucolipidoses/metabolismo , Neuraminidase/genética
9.
Glycoconj J ; 35(4): 375-386, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30088207

RESUMO

The sialylated glyconjugates (SGC) are found in abundance on the surface of brain cells, where they form a dense array of glycans mediating cell/cell and cell/protein recognition in numerous physiological and pathological processes. Metabolic genetic blocks in processing and catabolism of SGC result in development of severe storage disorders, dominated by CNS involvement including marked neuroinflammation and neurodegeneration, the pathophysiological mechanisms of which are still discussed. SGC patterns in the brain are cell and organelle-specific, dynamic and maintained by highly coordinated processes of their biosynthesis, trafficking, processing and catabolism. The changes in the composition of SGC during development and aging of the brain cannot be explained based solely on the regulation of the SGC-synthesizing enzymes, sialyltransferases, suggesting that neuraminidases (sialidases) hydrolysing the removal of terminal sialic acid residues also play an essential role. In the current review we summarize the roles of three mammalian neuraminidases: neuraminidase 1, neuraminidase 3 and neuraminidase 4 in processing brain SGC. Emerging data demonstrate that these enzymes with different, yet overlapping expression patterns, intracellular localization and substrate specificity play essential roles in the physiology of the CNS.


Assuntos
Encéfalo/enzimologia , Glicoconjugados/metabolismo , Neuraminidase/metabolismo , Doenças Neurodegenerativas/enzimologia , Animais , Humanos , Doenças Neurodegenerativas/patologia
10.
PLoS Genet ; 10(2): e1004146, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586188

RESUMO

The potent vasoconstrictor peptides, endothelin 1 (ET-1) and angiotensin II control adaptation of blood vessels to fluctuations of blood pressure. Previously we have shown that the circulating level of ET-1 is regulated through its proteolytic cleavage by secreted serine carboxypeptidase, cathepsin A (CathA). However, genetically-modified mouse expressing catalytically inactive CathA S190A mutant retained about 10-15% of the carboxypeptidase activity against ET-1 in its tissues suggesting a presence of parallel/redundant catabolic pathway(s). In the current work we provide direct evidence that the enzyme, which complements CathA action towards ET-1 is a retinoid-inducible lysosomal serine carboxypeptidase 1 (Scpep1), a CathA homolog with previously unknown biological function. We generated a mouse strain devoid of both CathA and Scpep1 activities (DD mice) and found that in response to high-salt diet and systemic injections of ET-1 these animals showed significantly increased blood pressure as compared to wild type mice or those with single deficiencies of CathA or Scpep1. We also found that the reactivity of mesenteric arteries from DD mice towards ET-1 was significantly higher than that for all other groups of mice. The DD mice had a reduced degradation rate of ET-1 in the blood whereas their cultured arterial vascular smooth muscle cells showed increased ET-1-dependent phosphorylation of myosin light chain 2. Together, our results define the biological role of mammalian serine carboxypeptidase Scpep1 and suggest that Scpep1 and CathA together participate in the control of ET-1 regulation of vascular tone and hemodynamics.


Assuntos
Carboxipeptidases/metabolismo , Catepsina A/metabolismo , Endotelina-1/metabolismo , Hipertensão/genética , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Pressão Sanguínea/genética , Carboxipeptidases/genética , Catepsina A/genética , Células Cultivadas , Endotelina-1/genética , Hemodinâmica/genética , Humanos , Hipertensão/patologia , Camundongos , Vasoconstrição/genética
11.
PLoS Genet ; 10(10): e1004772, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25356899

RESUMO

Genetics is believed to have an important role in intellectual disability (ID). Recent studies have emphasized the involvement of de novo mutations (DNMs) in ID but the extent to which they contribute to its pathogenesis and the identity of the corresponding genes remain largely unknown. Here, we report a screen for DNMs in subjects with moderate or severe ID. We sequenced the exomes of 41 probands and their parents, and confirmed 81 DNMs affecting the coding sequence or consensus splice sites (1.98 DNMs/proband). We observed a significant excess of de novo single nucleotide substitutions and loss-of-function mutations in these cases compared to control subjects, suggesting that at least a subset of these variations are pathogenic. A total of 12 likely pathogenic DNMs were identified in genes previously associated with ID (ARID1B, CHD2, FOXG1, GABRB3, GATAD2B, GRIN2B, MBD5, MED13L, SETBP1, TBR1, TCF4, WDR45), resulting in a diagnostic yield of ∼29%. We also identified 12 possibly pathogenic DNMs in genes (HNRNPU, WAC, RYR2, SET, EGR1, MYH10, EIF2C1, COL4A3BP, CHMP2A, PPP1CB, VPS4A, PPP2R2B) that have not previously been causally linked to ID. Interestingly, no case was explained by inherited mutations. Protein network analysis indicated that the products of many of these known and candidate genes interact with each other or with products of other ID-associated genes further supporting their involvement in ID. We conclude that DNMs represent a major cause of moderate or severe ID.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Códon sem Sentido , Epilepsia/patologia , Exoma/genética , Mutação da Fase de Leitura , Humanos , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto , Mutação Puntual , Splicing de RNA/genética , Deleção de Sequência
12.
Brain ; 138(Pt 2): 336-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25567323

RESUMO

Severe progressive neurological paediatric disease mucopolysaccharidosis III type C is caused by mutations in the HGSNAT gene leading to deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase involved in the lysosomal catabolism of heparan sulphate. To understand the pathophysiology of the disease we generated a mouse model of mucopolysaccharidosis III type C by germline inactivation of the Hgsnat gene. At 6-8 months mice showed hyperactivity, and reduced anxiety. Cognitive memory decline was detected at 10 months and at 12-13 months mice showed signs of unbalanced hesitant walk and urinary retention. Lysosomal accumulation of heparan sulphate was observed in hepatocytes, splenic sinus endothelium, cerebral microglia, liver Kupffer cells, fibroblasts and pericytes. Starting from 5 months, brain neurons showed enlarged, structurally abnormal mitochondria, impaired mitochondrial energy metabolism, and storage of densely packed autofluorescent material, gangliosides, lysozyme, phosphorylated tau, and amyloid-ß. Taken together, our data demonstrate for the first time that deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase causes lysosomal accumulation of heparan sulphate in microglial cells followed by their activation and cytokine release. They also show mitochondrial dysfunction in the neurons and neuronal loss explaining why mucopolysaccharidosis III type C manifests primarily as a neurodegenerative disease.


Assuntos
Doenças Mitocondriais/patologia , Mucopolissacaridose III/patologia , Neurite (Inflamação)/patologia , Doenças Neurodegenerativas/patologia , Acetiltransferases/deficiência , Acetiltransferases/genética , Animais , Comportamento Animal , Metabolismo Energético/fisiologia , Gangliosídeos/metabolismo , Glicosaminoglicanos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Doenças Mitocondriais/etiologia , Mucopolissacaridose III/complicações , Mucopolissacaridose III/psicologia , Neurite (Inflamação)/etiologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/psicologia , Exame Neurológico , Deficiências na Proteostase/patologia
13.
Cells ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786099

RESUMO

Mucopolysaccharidosis III type C (MPS IIIC) is an untreatable neuropathic lysosomal storage disease caused by a genetic deficiency of the lysosomal N-acetyltransferase, HGSNAT, catalyzing a transmembrane acetylation of heparan sulfate. HGSNAT is a transmembrane enzyme incapable of free diffusion between the cells or their cross-correction, which limits development of therapies based on enzyme replacement and gene correction. Since our previous work identified neuroinflammation as a hallmark of the CNS pathology in MPS IIIC, we tested whether it can be corrected by replacement of activated brain microglia with neuroprotective macrophages/microglia derived from a heterologous HSPC transplant. Eight-week-old MPS IIIC (HgsnatP304L) mice were transplanted with HSPC from congenic wild type mice after myeloablation with Busulfan and studied using behavior test battery, starting from the age of 6 months. At the age of ~8 months, mice were sacrificed to study pathological changes in the brain, heparan sulfate storage, and other biomarkers of the disease. We found that the treatment corrected several behavior deficits including hyperactivity and reduction in socialization, but not memory decline. It also improved several features of CNS pathology such as microastroglyosis, expression of pro-inflammatory cytokine IL-1ß, and accumulation of misfolded amyloid aggregates in cortical neurons. At the periphery, the treatment delayed development of terminal urinary retention, potentially increasing longevity, and reduced blood levels of heparan sulfate. However, we did not observe correction of lysosomal storage phenotype in neurons and heparan sulfate brain levels. Together, our results demonstrate that neuroinflammation in a neurological lysosomal storage disease, caused by defects in a transmembrane enzyme, can be effectively ameliorated by replacement of microglia bearing the genetic defect with cells from a normal healthy donor. They also suggest that heterologous HSPC transplant, if used together with other methods, such as chaperone therapy or substrate reduction therapy, may constitute an effective combination therapy for MPS IIIC and other disorders with a similar etiology.


Assuntos
Modelos Animais de Doenças , Mucopolissacaridose III , Doenças Neuroinflamatórias , Animais , Mucopolissacaridose III/patologia , Mucopolissacaridose III/terapia , Mucopolissacaridose III/genética , Camundongos , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Lisossomos/metabolismo , Microglia/patologia , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/patologia , Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Inflamação/patologia
14.
Nat Struct Mol Biol ; 31(10): 1502-1508, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38769387

RESUMO

Lysosomal transmembrane acetylation of heparan sulfates (HS) is catalyzed by HS acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), whose dysfunction leads to lysosomal storage diseases. The mechanism by which HGSNAT, the sole non-hydrolase enzyme in HS degradation, brings cytosolic acetyl-coenzyme A (Ac-CoA) and lysosomal HS together for N-acyltransferase reactions remains unclear. Here, we present cryogenic-electron microscopy structures of HGSNAT alone, complexed with Ac-CoA and with acetylated products. These structures explain that Ac-CoA binding from the cytosolic side causes dimeric HGSNAT to form a transmembrane tunnel. Within this tunnel, catalytic histidine and asparagine approach the lumen and instigate the transfer of the acetyl group from Ac-CoA to the glucosamine group of HS. Our study unveils a transmembrane acetylation mechanism that may help advance therapeutic strategies targeting lysosomal storage diseases.


Assuntos
Acetiltransferases , Microscopia Crioeletrônica , Lisossomos , Lisossomos/metabolismo , Acetilação , Humanos , Acetiltransferases/metabolismo , Acetiltransferases/química , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Modelos Moleculares , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química
15.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712143

RESUMO

Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), ß-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology.

16.
Nature ; 445(7130): 881-5, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17293876

RESUMO

Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Genoma Humano , Estudos de Casos e Controles , Proteínas de Transporte de Cátions/genética , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 8/genética , França , Humanos , Desequilíbrio de Ligação , Transportador 8 de Zinco
17.
PLoS Genet ; 6(9): e1001118, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20862357

RESUMO

Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the α-subunit of lysosomal ß-hexosaminidase A, which converts G(M2) to G(M3) ganglioside. Hexa(-/-) mice, depleted of ß-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise G(M2) ganglioside via a lysosomal sialidase into glycolipid G(A2), which is further processed by ß-hexosaminidase B to lactosyl-ceramide, thereby bypassing the ß-hexosaminidase A defect. Since this bypass is not effective in humans, infantile Tay-Sachs disease is fatal in the first years of life. Previously, we identified a novel ganglioside metabolizing sialidase, Neu4, abundantly expressed in mouse brain neurons. Now we demonstrate that mice with targeted disruption of both Neu4 and Hexa genes (Neu4(-/-);Hexa(-/-)) show epileptic seizures with 40% penetrance correlating with polyspike discharges on the cortical electrodes of the electroencephalogram. Single knockout Hexa(-/-) or Neu4(-/-) siblings do not show such symptoms. Further, double-knockout but not single-knockout mice have multiple degenerating neurons in the cortex and hippocampus and multiple layers of cortical neurons accumulating G(M2) ganglioside. Together, our data suggest that the Neu4 block exacerbates the disease in Hexa(-/-) mice, indicating that Neu4 is a modifier gene in the mouse model of Tay-Sachs disease, reducing the disease severity through the metabolic bypass. However, while disease severity in the double mutant is increased, it is not profound suggesting that Neu4 is not the only sialidase contributing to the metabolic bypass in Hexa(-/-) mice.


Assuntos
Epilepsia/enzimologia , Epilepsia/patologia , Lisossomos/enzimologia , Neuraminidase/deficiência , Neurônios/enzimologia , Neurônios/patologia , Cadeia alfa da beta-Hexosaminidase/metabolismo , Animais , Comportamento Animal , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/ultraestrutura , Eletroencefalografia , Epilepsia/fisiopatologia , Gangliosídeo G(M2)/metabolismo , Técnicas de Inativação de Genes , Hipocampo/enzimologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Hipocampo/ultraestrutura , Aprendizagem/fisiologia , Lisossomos/patologia , Lisossomos/ultraestrutura , Camundongos , Atividade Motora/fisiologia , Neuraminidase/metabolismo , Neurônios/ultraestrutura
18.
PLoS One ; 18(9): e0292157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37756356

RESUMO

Heparan sulfate (HS), an abundant component of the apical cell surface and basement membrane, belongs to the glycosaminoglycan family of carbohydrates covalently linked to proteins called heparan sulfate proteoglycans. After endocytosis, HS is degraded in the lysosome by several enzymes, including heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), and in its absence causes Mucopolysaccharidosis III type C (Sanfilippo type C). Since endocytosis occurs in epithelial cells of the testis and epididymis, we examined the morphological effects of Hgsnat inactivation in these organs. In the testis, Hgsnat knockout (Hgsnat-Geo) mice revealed statistically significant decrease in tubule and epithelial profile area of seminiferous tubules. Electron microscopy (EM) analysis revealed cross-sectional tubule profiles with normal and moderately to severely altered appearances. Abnormalities in Sertoli cells and blood-testis barrier and the absence of germ cells in some tubules were noted along with altered morphology of sperm, sperm motility parameters and a reduction in fertilization rates in vitro. Along with quantitatively increased epithelial and tubular profile areas in the epididymis, EM demonstrated significant accumulations of electrolucent lysosomes in the caput-cauda regions that were reactive for cathepsin D and prosaposin antibodies. Lysosomes with similar storage materials were also found in basal, clear and myoid cells. In the mid/basal region of the epithelium of caput-cauda regions of KO mice, large vacuolated cells, unreactive for cytokeratin 5, a basal cell marker, were identified morphologically as epididymal mononuclear phagocytes (eMPs). The cytoplasm of the eMPs was occupied by a gigantic lysosome suggesting an active role of these cells in removing debris from the epithelium. Some eMPs were found in proximity to T-lymphocytes, a feature of dendritic cells. Taken together, our results reveal that upon Hgsnat inactivation, morphological alterations occur to the testis affecting sperm morphology and motility parameters and abnormal lysosomes in epididymal epithelial cells, indicative of a lysosomal storage disease.

19.
Front Mol Neurosci ; 16: 1242814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098938

RESUMO

AB-Variant GM2 gangliosidosis (ABGM2) is a rare and lethal genetic disorder caused by mutations in the GM2A gene that lead to fatal accumulation of GM2 gangliosides (GM2) in neurons of the central nervous system (CNS). GM2A encodes a transport protein known as GM2 activator (GM2A) protein, which is essential for degrading GM2 into their GM3 form. ABGM2 presents in infantile-, juvenile-, and adult-onset forms; of the three, the infantile-onset is the most prominent, and by far the most severe, as evidenced by high levels of GM2 accumulation, widespread neurodegeneration, and death by the age of 4. Gm2a-/- mice are commonly used as a model of ABGM2. These mice are characterized by phenotypes most representative of predicted adult-onset form of ABGM2, which include moderate GM2 accumulation and mild neurological defects. This mild phenotype has been attributed to compensation by alternative GM2 degradation pathways mediated by sialidase, neuraminidase 3 (NEU3), a pathway that is more prominent in mice than humans. To assess the extent to which NEU3 contributes to GM2 degradation, we generated double knock-out (Gm2a-/-Neu3-/-) mice. Compellingly, these mice present with a clinical phenotype resembling that of a more severe ABGM2, including ataxia, reduced mobility and coordination, weight loss, poor body scores, and lethality by 6-7 months. Furthermore, these phenotypes correlate with a dramatic increase in GM2 accumulation in the CNS compared to levels observed in either Gm2a-/- or Neu3-/- mice. Taken together, these studies, for the first-time, confirm that the mild neurological phenotype of Gm2a-/- mice is due to compensatory activity on GM2 catabolism through an alternate breakdown pathway involving NEU3. These studies support the use of double knockout mice as a novel and highly relevant model for pre-clinical drug studies in a more severe form of ABGM2.

20.
Commun Biol ; 6(1): 560, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231125

RESUMO

Mutations in ASAH1 have been linked to two allegedly distinct disorders: Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). We have previously reported FD-like phenotypes in mice harboring a single amino acid substitution in acid ceramidase (ACDase), P361R, known to be pathogenic in humans (P361R-Farber). Here we describe a mouse model with an SMA-PME-like phenotype (P361R-SMA). P361R-SMA mice live 2-3-times longer than P361R-Farber mice and have different phenotypes including progressive ataxia and bladder dysfunction, which suggests neurological dysfunction. We found profound demyelination, loss of axons, and altered sphingolipid levels in P361R-SMA spinal cords; severe pathology was restricted to the white matter. Our model can serve as a tool to study the pathological effects of ACDase deficiency on the central nervous system and to evaluate potential therapies for SMA-PME.


Assuntos
Lipogranulomatose de Farber , Atrofia Muscular Espinal , Epilepsias Mioclônicas Progressivas , Humanos , Camundongos , Animais , Lipogranulomatose de Farber/genética , Lipogranulomatose de Farber/metabolismo , Lipogranulomatose de Farber/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Esfingolipídeos/metabolismo , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/patologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA