Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(27): e2301034, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526323

RESUMO

Because of the rapid mutation and high airborne transmission of SARS-CoV-2, a universal vaccine preventing the infection in the upper respiratory tract is particularly urgent. Here, a mosaic receptor-binding domain (RBD) nanoparticle (NP) vaccine is developed, which induces more RBD-targeted type IV neutralizing antibodies (NAbs) and exhibits broad cross-protective activity against multiple SARS-CoV-2 sublineages including the newly-emerged BF.7, BQ.1, XBB. As several T-cell-reactive epitopes, which are highly conserved in sarbecoviruses, are displayed on the NP surface, it also provokes potent and cross-reactive cellular immune responses in the respiratory tissue. Through intranasal delivery, it elicits robust mucosal immune responses and full protection without any adjuvants. Therefore, this intranasal mosaic NP vaccine can be further developed as a pan-sarbecovirus vaccine to block the viral entrance from the upper respiratory tract.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Imunidade nas Mucosas
2.
Cancer Res ; 82(17): 3130-3142, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35802647

RESUMO

Tissue-resident memory CD8+ T (TRM) cells have been associated with robust protective antitumor immune responses and improved prognosis of patients with cancer. Therefore, therapeutic strategies that modulate either the production or activity of TRM cells could be effective for treating cancer. Using a high-throughput drug screen, we showed that the neurotransmitter dopamine drives differentiation of CD8+ T cells into CD103+ TRM cells. In murine syngeneic tumor xenograft models and clinical human colon cancer samples, DRD5 served as the major functional dopamine receptor on CD8+ T cells and positively correlated with TRM cell density. DRD5 deficiency led to a failure of CD8+ T cells to accumulate in tissues, resulting in impaired TRM cell formation, reduced effector function, and uncontrolled disease progression. Moreover, dopamine treatment promoted the antitumor activity of CD8+ T cells and suppressed colorectal cancer growth in immunocompentent mouse models, and ex vivo preconditioning with dopamine enhanced the in vivo efficacy of chimeric antigen receptor (CAR)-T cells. Finally, in a patient with colorectal cancer cohort, dopamine expression was positively associated with patient survival and CD8+ T-cell infiltration. These findings suggest that dopaminergic immunoregulation plays an important role in the differentiation of CD8+ cells into CD103+ TRM cells and thereby modulates TRM-elicited antitumor immunity in colorectal cancer. SIGNIFICANCE: Identification of an immunostimulatory function of dopamine signaling by promoting tissue-resident memory T-cell differentiation and sustaining T-cell effector functions reveals potential therapeutic strategies and prognostic biomarkers for colorectal cancer.


Assuntos
Neoplasias Colorretais , Memória Imunológica , Animais , Linfócitos T CD8-Positivos , Neoplasias Colorretais/metabolismo , Dopamina/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Receptores de Dopamina D5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA