Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Exp Physiol ; 109(4): 549-561, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461483

RESUMO

Changes in myonuclear architecture and positioning are associated with exercise adaptations and ageing. However, data on the positioning and number of myonuclei following exercise are inconsistent. Additionally, whether myonuclear domains (MNDs; i.e., the theoretical volume of cytoplasm within which a myonucleus is responsible for transcribing DNA) and myonuclear positioning are altered with age remains unclear. The aim of this investigation was to investigate relationships between age and activity status and myonuclear domains and positioning. Vastus lateralis muscle biopsies from younger endurance-trained (YT) and older endurance-trained (OT) individuals were compared with age-matched untrained counterparts (YU and OU; OU samples were acquired during surgical operation). Serial, optical z-slices were acquired throughout isolated muscle fibres and analysed to give three-dimensional coordinates for myonuclei and muscle fibre dimensions. The mean cross-sectional area (CSA) of muscle fibres from OU individuals was 33%-53% smaller compared with the other groups. The number of nuclei relative to fibre CSA was 90% greater in OU compared with YU muscle fibres. Additionally, scaling of MND volume with fibre size was altered in older untrained individuals. The myonuclear arrangement, in contrast, was similar across groups. Fibre CSA and most myonuclear parameters were significantly associated with age in untrained individuals, but not in trained individuals. These data indicate that regular endurance exercise throughout the lifespan might better preserve the size of muscle fibres in older age and maintain the relationship between fibre size and MND volumes. Inactivity, however, might result in reduced muscle fibre size and altered myonuclear parameters.


Assuntos
Envelhecimento , Fibras Musculares Esqueléticas , Humanos , Idoso , Fibras Musculares Esqueléticas/fisiologia , Núcleo Celular , Músculo Quadríceps , Terapia por Exercício , Músculo Esquelético
2.
Clin J Sport Med ; 33(3): 239-245, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476634

RESUMO

OBJECTIVES: Although gastrointestinal (GI) symptoms are prevalent in endurance athletes, scant research has examined GI symptoms in team-sport athletes, their impacts, and explanatory factors. This study aimed to assess the prevalence and severity of GI symptoms in team-sport athletes and identify potential risk factors. DESIGN: An observational anonymous survey. SETTING: Online. PARTICIPANTS: Hundred forty-three athletes (79 men and 64 women) from team-based sports, with soccer, rugby, and American football athletes comprising approximately 75% of the sample. ASSESSMENTS OF RISK FACTORS: Age, gender, body mass index, competition experience, trait anxiety, and resting GI symptoms. MAIN OUTCOMES: Gastrointestinal symptoms during training and competition. RESULTS: Overall, past-month GI symptoms during training and competition were mild and relatively infrequent. However, 13.9% and 37.5% of men and women, respectively, reported that GI symptoms had ever impacted their performance. In comparison to men, women reported that nausea, bloating, and abdominal cramping were more likely to have affected performance ( P < 0.05). Women also had higher trait anxiety and higher scores for resting GI symptoms, during-training GI symptoms, and during-competition GI symptoms ( P < 0.001). Resting GI symptoms were the strongest predictor of training and competition GI symptoms (ρ = 0.46-0.67), although trait anxiety was also consistently correlated with competition GI symptoms (ρ = 0.29-0.38). CONCLUSIONS: This study suggests that female team-sport athletes experience a higher burden of GI symptoms than males, and that resting symptoms and anxiety predict competition symptoms. Interventions targeting anxiety could theoretically reduce GI symptoms in some team-sport athletes, but this should be confirmed through experimental designs.


Assuntos
Futebol Americano , Futebol , Masculino , Humanos , Feminino , Atletas , Esportes de Equipe
3.
J Sports Sci ; 40(16): 1849-1856, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36062921

RESUMO

The physiological effects of low energy availability (EA) have been studied using a homogenous daily EA pattern in laboratory settings. However, whether this daily EA pattern represents those of free-living athletes and is therefore ecologically valid is unknown. To investigate this, we assessed daily exercise energy expenditure, energy intake and EA in 10 free-living elite male road cyclists (20 min Mean Maximal Power: 5.27 ± 0.25 W · kg-1) during 7 consecutive days of late pre-season training. Energy intake was measured using the remote-food photography method and exercise energy expenditure estimated from cycling crank-based power-metres. Seven-day mean ± SD energy intake and exercise energy expenditure was 57.9 ± 10.4 and 38.4 ± 8.6 kcal · kg FFM-1 · day-1, respectively. EA was 19.5 ± 9.1 kcal · kg FFM-1 · day-1. Within-participants correlation between daily energy intake and exercise energy expenditure was .62 (95% CI: .43 - .75; P < .001), and .60 (95% CI: .41 - .74; P < .001) between carbohydrate intake and exercise energy expenditure. However, energy intake only partially compensated for exercise energy expenditure, increasing 210 kcal · day-1 per 1000 kcal · day-1 increase in expenditure. EA patterns displayed marked day-to-day fluctuation (range: -22 to 76 kcal · kg FFM-1 · day-1). The validity of research using homogenous low EA patterns therefore requires further investigation.


Assuntos
Atletas , Ingestão de Energia , Humanos , Masculino , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Carboidratos
4.
Int J Sport Nutr Exerc Metab ; 32(4): 256-264, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35313275

RESUMO

Athletes from weight-sensitive sports are reported to consume low-fiber diets (LOW) to induce acute reductions in body mass (BM). However, evidence supporting their efficacy is anecdotal. Therefore, we aimed to determine the effect of a LOW on acute changes in BM. Nineteen healthy males (32 ± 10 years, 1.79 ± 0.07 m, 77.5 ± 8.1 kg) consumed their habitual diet (∼30 g fiber/day) for 7 consecutive days followed by 4 days of a LOW (<10 g fiber/day) that was matched for energy and macronutrient content. Participants also matched their daily exercise load during LOW to that completed during habitual diet (p = .669, average 257 ± 141 arbitrary units). BM was significantly reduced in LOW versus habitual diet after 4 days (Δ = 0.40 ± 0.77 kg or 0.49% ± 0.91%, p < .05, effect size [ES] [95% confidence interval] = -0.53 [-1.17, 0.12]) and on the morning of Day 5 (Δ = 0.58 ± 0.83 kg or 0.74% ± 0.99%, p < .01, ES = -0.69 [-1.34, -0.03]). LOW resulted in moderately higher hunger (Δ = 5 ± 9 mm, p = .015, ES = 0.55 [-0.09, 1.20]), a decline in stool frequency from 2 ± 0 to 1 ± 0 bowel movements per day (p = .012, ES = 0.64 [-0.02, 1.29]) and stool softness decrease (p = .005). Nonetheless, participants reported the diet to be tolerable (n = 18/19) and were willing to repeat it (n = 16/19). Data demonstrate for the first time that consumption of a short-term LOW induces reductions in BM.


Assuntos
Fibras na Dieta , Esportes , Dieta , Fezes , Humanos , Fome , Masculino
5.
Eur J Appl Physiol ; 121(10): 2657-2674, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34131799

RESUMO

Gastrointestinal symptoms are abundant among athletes engaging in endurance exercise, particularly when exercising in increased environmental temperatures, at higher intensities, or over extremely long distances. It is currently thought that prolonged ischemia, mechanical damage to the epithelial lining, and loss of epithelial barrier integrity are likely contributors of gastrointestinal (GI) distress during bouts of endurance exercise, but due to the many potential causes and sporadic nature of symptoms this phenomenon has proven difficult to study. In this review, we cover known factors that contribute to GI distress symptoms in athletes during exercise, while further attempting to identify novel avenues of future research to help elucidate mechanisms leading to symptomology. We explore the link between the intestinal microbiome, the integrity of the gut epithelia, and add detail on gut hormone and peptide secretion that could potentially contribute to GI distress symptoms in athletes. The influence of nutrition and dietary supplementation strategies are also detailed, where much research has opened up new ideas and potential mechanisms for understanding gut pathophysiology during exercise. The etiology of gastrointestinal symptoms during endurance exercise is multi-factorial with neuroendocrine, microbial, and nutritional factors likely contributing to specific, individualized symptoms. Recent work in previously unexplored areas of both microbiome and gut peptide secretion are pertinent areas for future work, and the numerous supplementation strategies explored to date have provided insight into physiological mechanisms that may be targetable to reduce the incidence and severity of gastrointestinal symptoms in athletes.


Assuntos
Terapia por Exercício , Exercício Físico/fisiologia , Gastroenteropatias/terapia , Microbiota/fisiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Resistência Física/fisiologia
6.
Am J Physiol Endocrinol Metab ; 318(4): E504-E513, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32069071

RESUMO

We hypothesized that probiotic supplementation (PRO) increases the absorption and oxidation of orally ingested maltodextrin during 2 h endurance cycling, thereby sparing muscle glycogen for a subsequent time trial (simulating a road race). Measurements were made of lipid and carbohydrate oxidation, plasma metabolites and insulin, gastrointestinal (GI) permeability, and subjective symptoms of discomfort. Seven male cyclists were randomized to PRO (bacterial composition given in methods) or placebo for 4 wk, separated by a 14-day washout period. After each period, cyclists consumed a 10% maltodextrin solution (initial 8 mL/kg bolus and 2 mL/kg every 15 min) while exercising for 2 h at 55% maximal aerobic power output, followed by a 100-kJ time trial. PRO resulted in small increases in peak oxidation rates of the ingested maltodextrin (0.84 ± 0.10 vs. 0.77 ± 0.09 g/min; P = 0.016) and mean total carbohydrate oxidation (2.20 ± 0.25 vs. 1.87 ± 0.39 g/min; P = 0.038), whereas fat oxidation was reduced (0.40 ± 0.11 vs. 0.55 ± 0.10 g/min; P = 0.021). During PRO, small but significant increases were seen in glucose absorption, plasma glucose, and insulin concentration and decreases in nonesterified fatty acid and glycerol. Differences between markers of GI damage and permeability and time-trial performance were not significant (P > 0.05). In contrast to the hypothesis, PRO led to minimal increases in absorption and oxidation of the ingested maltodextrin and small reductions in fat oxidation, whereas having no effect on subsequent time-trial performance.


Assuntos
Ciclismo/fisiologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Suplementos Nutricionais , Probióticos/farmacologia , Adulto , Estudos Cross-Over , Carboidratos da Dieta , Método Duplo-Cego , Exercício Físico , Ácidos Graxos não Esterificados/sangue , Glucose/metabolismo , Glicerol/sangue , Humanos , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Polissacarídeos/farmacocinética , Adulto Jovem
7.
Curr Opin Clin Nutr Metab Care ; 23(6): 428-436, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32769404

RESUMO

PURPOSE OF REVIEW: This is a review of the most up-to-date research on the effectiveness of probiotic supplementation for outcomes related to athletes and physical activity. The focus is on clinical research incorporating exercise and/or physically active participants on the nutritional effectiveness of single and multistrain preparations. RECENT FINDINGS: Findings of the included clinical studies support the notion that certain probiotics could play important roles in maintaining normal physiology and energy production during exercise which may lead to performance-improvement and antifatigue effects, improve exercise-induced gastrointestinal symptoms and permeability, stimulate/modulate of the immune system, and improve the ability to digest, absorb, and metabolize macro and micronutrients important to exercise performance and recovery/health status of those physically active. SUMMARY: The current body of literature highlights the specificity of probiotic strain/dose and potential mechanisms of action for application in sport. These novel findings open new areas research, potential use for human health, and reinforce the potential role for probiotic's in exercise performance. While encouraging, more well designed studies of probiotic supplementation in various sport applications are warranted.


Assuntos
Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Probióticos/farmacologia , Fenômenos Fisiológicos da Nutrição Esportiva , Humanos
8.
Eur J Appl Physiol ; 120(2): 493-503, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894414

RESUMO

PURPOSE: To investigate the effects of exercise in combination with, or without, a leucine-enriched whey protein supplement on muscle mass, fat mass, myoelectrical muscle fatigue and health-related quality of life (HR-QOL) in older adults. METHODS: 100 community-dwelling older adults [52% women, age: 69 ± 6 years (mean ± SD)] were randomised to four [Control (C); Exercise (E); Exercise + Protein (EP); Protein (P)] independent groups. E and EP groups completed 16 weeks of exercise [resistance (2 times/week) and functional (1 time/week]. EP and P groups were also administered a leucine-enriched whey protein supplement (3 times/day) based on body weight (1.5 g/kg/day). Muscle and fat mass (bioelectrical impedance analysis), myoelectrical muscle fatigue (surface electromyography) and HR-QOL (WHOQOL-BREF) were measured pre- and post-intervention. RESULTS: At post-intervention, the rectus femoris (E: - 4.8%/min, p = 0.007, ES = 0.86; EP: - 3.3%/min, p = 0.045, ES = 0.58) and bicep femoris (E: - 3.9%/min, p < 0.001, ES = 1.46; EP: - 4.3%/min, p < 0.001, ES = 1.58) muscles became more resistant to fatigue in the E and EP groups, respectively (p < 0.05 versus C). HR-QOL improved in the E group only. Muscle and fat mass did not change (p > 0.05). CONCLUSION: Physical exercise is a potent method to improve myoelectrical muscle fatigue and HR-QOL in older adults. However, leucine-enriched whey protein did not augment this response in those already consuming sufficient quantities of protein at trial enrolment.


Assuntos
Composição Corporal/fisiologia , Exercício Físico/fisiologia , Força Muscular/fisiologia , Proteínas do Soro do Leite , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/fisiologia , Idoso , Composição Corporal/efeitos dos fármacos , Proteínas Alimentares , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
9.
J Physiol ; 597(18): 4779-4796, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31364768

RESUMO

KEY POINTS: Reduced carbohydrate (CHO) availability before and after exercise may augment endurance training-induced adaptations of human skeletal muscle, as mediated via modulation of cell signalling pathways. However, it is not known whether such responses are mediated by CHO restriction, energy restriction or a combination of both. In recovery from a twice per day training protocol where muscle glycogen concentration is maintained within 200-350 mmol kg-1 dry weight (dw), we demonstrate that acute post-exercise CHO and energy restriction (i.e. < 24 h) does not potentiate potent cell signalling pathways that regulate hallmark adaptations associated with endurance training. In contrast, consuming CHO before, during and after an acute training session attenuated markers of bone resorption, effects that are independent of energy availability. Whilst the enhanced muscle adaptations associated with CHO restriction may be regulated by absolute muscle glycogen concentration, the acute within-day fluctuations in CHO availability inherent to twice per day training may have chronic implications for bone turnover. ABSTRACT: We examined the effects of post-exercise carbohydrate (CHO) and energy availability (EA) on potent skeletal muscle cell signalling pathways (regulating mitochondrial biogenesis and lipid metabolism) and indicators of bone metabolism. In a repeated measures design, nine males completed a morning (AM) and afternoon (PM) high-intensity interval (HIT) (8 × 5 min at 85% V̇O2peak ) running protocol (interspersed by 3.5 h) under dietary conditions of (1) high CHO availability (HCHO: CHO ∼12 g kg-1 , EA∼ 60 kcal kg-1 fat free mass (FFM)), (2) reduced CHO but high fat availability (LCHF: CHO ∼3 (-1 , EA∼ 60 kcal kg-1 FFM) or (3), reduced CHO and reduced energy availability (LCAL: CHO ∼3 g kg-1 , EA∼ 20 kcal kg-1 FFM). Muscle glycogen was reduced to ∼200 mmol kg-1  dw in all trials immediately post PM HIT (P < 0.01) and remained lower at 17 h (171, 194 and 316 mmol kg-1  dw) post PM HIT in LCHF and LCAL (P < 0.001) compared to HCHO. Exercise induced comparable p38MAPK phosphorylation (P < 0.05) immediately post PM HIT and similar mRNA expression (all P < 0.05) of PGC-1α, p53 and CPT1 mRNA in HCHO, LCHF and LCAL. Post-exercise circulating ßCTX was lower in HCHO (P < 0.05) compared to LCHF and LCAL whereas exercise-induced increases in IL-6 were larger in LCAL (P < 0.05) compared to LCHF and HCHO. In conditions where glycogen concentration is maintained within 200-350 mmol kg-1  dw, we conclude post-exercise CHO and energy restriction (i.e. < 24 h) does not potentiate cell signalling pathways that regulate hallmark adaptations associated with endurance training. In contrast, consuming CHO before, during and after HIT running attenuates bone resorption, effects that are independent of energy availability and circulating IL-6.


Assuntos
Adaptação Fisiológica/fisiologia , Remodelação Óssea/fisiologia , Carboidratos/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Transdução de Sinais/fisiologia , Adulto , Glicogênio/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Músculo Esquelético/metabolismo , Biogênese de Organelas , Resistência Física/fisiologia , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Eur J Appl Physiol ; 119(7): 1491-1501, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30982100

RESUMO

PURPOSE: To evaluate the effects of probiotic supplementation on gastrointestinal (GI) symptoms, circulatory markers of GI permeability, damage, and markers of immune response during a marathon race. METHODS: Twenty-four recreational runners were randomly assigned to either supplement with a probiotic (PRO) capsule [25 billion CFU Lactobacillus acidophilus (CUL60 and CUL21), Bifidobacterium bifidum (CUL20), and Bifidobacterium animalis subs p. Lactis (CUL34)] or placebo (PLC) for 28 days prior to a marathon race. GI symptoms were recorded during the supplement period and during the race. Serum lactulose:rhamnose ratio, and plasma intestinal-fatty acid binding protein, sCD14, and cytokines were measured pre- and post-races. RESULTS: Prevalence of moderate GI symptoms reported were lower during the third and fourth weeks of the supplement period compared to the first and second weeks in PRO (p < 0.05) but not PLC (p > 0.05). During the marathon, GI symptom severity during the final third was significantly lower in PRO compared to PLC (p = 0.010). The lower symptom severity was associated with a significant difference in reduction of average speed from the first to the last third of the race between PLC (- 14.2 ± 5.8%) and PRO (- 7.9 ± 7.5%) (p = 0.04), although there was no difference in finish times between groups (p > 0.05). Circulatory measures increased to a similar extent between PRO and PLC (p > 0.05). CONCLUSION: Probiotics supplementation was associated with a lower incidence and severity of GI symptoms in marathon runners, although the exact mechanisms are yet to be elucidated. Reducing GI symptoms during marathon running may help maintain running pace during the latter stages of racing.


Assuntos
Citocinas/sangue , Proteínas de Ligação a Ácido Graxo/sangue , Trato Gastrointestinal/fisiologia , Corrida Moderada/fisiologia , Probióticos/administração & dosagem , Adulto , Bifidobacterium , Feminino , Gastroenteropatias/prevenção & controle , Trato Gastrointestinal/microbiologia , Humanos , Lactobacillus acidophilus , Lactose/sangue , Receptores de Lipopolissacarídeos/sangue , Masculino , Probióticos/uso terapêutico , Ramnose/sangue
11.
Eur J Appl Physiol ; 118(2): 225-238, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29071380

RESUMO

PURPOSE: Sarcopenia can begin from the 4-5th decade of life and is exacerbated by obesity and inactivity. A combination of resistance exercise (RE) and endurance exercise is recommended to combat rising obesity and inactivity levels. However, work continues to elucidate whether interference in adaptive outcomes occur when RE and endurance exercise are performed concurrently. This study examined whether a single bout of concurrent RE and high-intensity interval training (HIIT) alters the satellite cell response following exercise compared to RE alone. METHODS: Eight sedentary, overweight/obese, middle-aged individuals performed RE only (8 × 8 leg extensions at 70% 1RM), or RE + HIIT (10 × 1 min at 90% HRmax on a cycle ergometer). Muscle biopsies were collected from the vastus lateralis before and 96 h after the RE component to determine muscle fiber type-specific total (Pax7+ cells) and active (MyoD+ cells) satellite cell number using immunofluorescence microscopy. RESULTS: Type-I-specific Pax7+ (P = 0.001) cell number increased after both exercise trials. Type-I-specific MyoD+ (P = 0.001) cell number increased after RE only. However, an elevated baseline value in RE + HIIT compared to RE (P = 0.046) was observed, with no differences between exercise trials at 96 h (P = 0.21). Type-II-specific Pax7+ and MyoD+ cell number remained unchanged after both exercise trials (all P ≥ 0.13). CONCLUSION: Combining a HIIT session after a single bout of RE does not interfere with the increase in type-I-specific total, and possibly active, satellite cell number, compared to RE only. Concurrent RE + HIIT may offer a time-efficient way to maximise the physiological benefits from a single bout of exercise in sedentary, overweight/obese, middle-aged individuals.


Assuntos
Treinamento Intervalado de Alta Intensidade/métodos , Obesidade/terapia , Treinamento Resistido/métodos , Sarcopenia/terapia , Células Satélites de Músculo Esquelético/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína MyoD/metabolismo , Obesidade/complicações , Fator de Transcrição PAX7/metabolismo , Sarcopenia/etiologia , Células Satélites de Músculo Esquelético/metabolismo
12.
Eur J Appl Physiol ; 117(12): 2569-2577, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058112

RESUMO

PURPOSE: To examine the dose-response effects of acute glutamine supplementation on markers of gastrointestinal (GI) permeability, damage and, secondary, subjective symptoms of GI discomfort in response to running in the heat. METHODS: Ten recreationally active males completed a total of four exercise trials; a placebo trial and three glutamine trials at 0.25, 0.5 and 0.9 g kg-1 of fat-free mass (FFM) consumed 2 h before exercise. Each exercise trial consisted of a 60-min treadmill run at 70% of [Formula: see text] in an environmental chamber set at 30 °C. GI permeability was measured using ratio of lactulose to rhamnose (L:R) in serum. Plasma glutamine and intestinal fatty acid binding protein (I-FABP) concentrations were determined pre and post exercise. Subjective GI symptoms were assessed 45 min and 24 h post-exercise. RESULTS: Relative to placebo, L:R was likely lower following 0.25 g kg-1 (mean difference: - 0.023; ± 0.021) and 0.5 g kg-1 (- 0.019; ± 0.019) and very likely following 0.9 g kg- 1 (- 0.034; ± 0.024). GI symptoms were typically low and there was no effect of supplementation. DISCUSSION: Acute oral glutamine consumption attenuates GI permeability relative to placebo even at lower doses of 0.25 g kg-1, although larger doses may be more effective. It remains unclear if this will lead to reductions in GI symptoms. Athletes competing in the heat may, therefore, benefit from acute glutamine supplementation prior to exercise in order to maintain gastrointestinal integrity.


Assuntos
Proteínas de Ligação a Ácido Graxo/sangue , Glutamina/farmacologia , Temperatura Alta , Absorção Intestinal , Intestinos/fisiologia , Corrida/fisiologia , Administração Oral , Adulto , Relação Dose-Resposta a Droga , Glutamina/administração & dosagem , Glutamina/sangue , Humanos , Intestinos/efeitos dos fármacos , Lactose/sangue , Masculino , Ramnose/sangue
13.
Sports Med ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363029

RESUMO

BACKGROUND: Athletes often report gastrointestinal (GI) complaints. Standardized validated tests validated in athletes are lacking. OBJECTIVE: The objective of the current study was to investigate the test-retest reliability of the gastrointestinal symptoms rating scale (GSRS), a disease-specific instrument of 15 items to quantify the severity of various GI symptoms. METHODS: For this purpose, a 3-week repeated measurements design was used. The mean difference (Wilcoxon signed rank test), associations (Spearman correlations), and systematic difference using Bland-Altman calculations for repeated measurements, as well as its internal consistency (Cronbach's alpha) on testing day 1 and day 2 were analyzed, with significance set at p ≤ 0.05. A total of n = 70 well-trained athletes (26.1 ± 5.4 years, of which 40% were female) were included. RESULTS: A high Cronbach's α for GSRS was found on testing day 1 (0.825), and day 2 (0.823), suggesting a good and comparable internal consistency of the questionnaire. When assessing the multilevel temporal stability for total GSRS scores (28.0, IQR 22.0-36.3 vs 26.5, IQR 18.0-35.0), there was a small but significant difference (Z = - 2.489, and p = 0.013), but a fair correlation between day scores (r = 0.68, p < 0.001), and a Bland-Altman reporting difference between questionnaires within 10% of the total GSRS score, without significant reporting bias (p = 0.38). In most cases, except for hunger, burping, and loose stools, the individual GSRS items were reported in line with total scores and similar for sex. CONCLUSION: In conclusion, the GSRS is reliable when used with athletes, with good internal consistency for most symptoms independently of sex, except for hunger, burping, and loose stools.

15.
J Appl Physiol (1985) ; 135(3): 549-558, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391884

RESUMO

Understanding changes to gut microbiota composition and metabolic output in response to acute exercise may be necessary for understanding the mechanisms mediating the long-term health and performance benefits of exercise. Our primary objective was to characterize acute changes in the fecal microbiome and metabolome following participation in an ultra-endurance (3.9 km swim, 180.2 km bike, 42.2 km run) triathlon. An exploratory aim was to determine associations between athlete-specific factors [race performance (i.e., completion time) and lifetime years of endurance training] with pre-race gut microbiota and metabolite profiles. Stool samples from 12 triathletes (9 males/3 females; 43 ± 14 yr, 23 ± 2 kg/m2) were collected ≤48 h before and the first bowel movement following race completion. Intra- and inter-individual diversity of bacterial species and individual bacterial taxa were unaltered following race completion (P > 0.05). However, significant reductions (P < 0.05) in free and secondary bile acids [deoxycholic acid (DCA), 12-keto-lithocholic acid (12-ketoLCA)] and short-chain fatty acids (butyric and pivalic acids), and significant increases (P < 0.05) in long-chain fatty acids (oleic and palmitoleic acids) were observed. Exploratory analyses revealed several associations between pre-race bacterial taxa and fecal metabolites with race performance and lifetime history of endurance training (P < 0.05). These findings suggest that 1) acute ultra-endurance exercise shifts microbial metabolism independent of changes to community composition and 2) athlete performance level and training history relate to resting-state gut microbial ecology.NEW & NOTEWORTHY This is the first study to characterize acute changes in gut microbial ecology and metabolism following an ultra-endurance triathlon. We demonstrate changes in gut microbial community function, but not structure, as well as several associations between gut microbiome and fecal metabolome characteristics with race completion time and lifetime history of endurance training. These data add to a small but growing body of literature seeking to characterize the acute and chronic effects of exercise on the gut microbial ecosystem.


Assuntos
Desempenho Atlético , Microbiota , Humanos , Masculino , Feminino , Resistência Física/fisiologia , Desempenho Atlético/fisiologia , Natação/fisiologia , Metaboloma
16.
Artigo em Inglês | MEDLINE | ID: mdl-37754606

RESUMO

This pilot study aimed to compare the effects of eight weeks of concurrent resistance training (RT) and high-intensity interval training (HIIT) vs. RT alone on muscle performance, mass and quality in adults with type 2 diabetes (T2DM). Twelve T2DM adults were randomly allocated to the RT + HIIT (n = 5) or RT (n = 7) group. Before and after training, maximal oxygen uptake (VO2max), muscle strength and power were evaluated by calorimetry, dynamometry and one-repetition maximum (1RM) test. Quadriceps muscle volume was determined by MRI, and muscle quality was estimated. After RT, VO2max (+12%), knee muscle power (+20%), quadriceps muscle volume (+5.9%) and quality (leg extension, +65.4%; leg step-up, +223%) and 1RM at leg extension (+66.4%), leg step-up (+267%), lat pulldown (+60.9%) and chest press (+61.2%) significantly increased. The RT + HIIT group improved on VO2max (+27%), muscle volume (+6%), muscle power (+9%) and 1RM at lat pulldown (+47%). No other differences were detected. Among groups, changes in muscle quality at leg step-up and leg extension and VO2max were significantly different. The combination of RT and HIIT effectively improves muscle function and size and increases cardiorespiratory fitness in adults with T2DM. However, HIIT combined with RT may interfere with the development of muscle quality.

17.
J Sport Health Sci ; 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36539062

RESUMO

BACKGROUND: The purported ergogenic and health effects of probiotics have been a topic of great intrigue among researchers, practitioners, and the lay public alike. There has also been an increased research focus within the realm of sports science and exercise medicine on the athletic gut microbiota. However, compared to other ergogenic aids and dietary supplements, probiotics present unique study challenges. The objectives of this systematic scoping review were to identify and characterize study methodologies of randomized controlled trials investigating supplementation with probiotics in athletes and physically active individuals. METHODS: Four databases (MEDLINE, CINAHL, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews) were searched for randomized controlled studies involving healthy athletes or physically active individuals. An intervention with probiotics and inclusion of a control and/or placebo group were essential. Only peer-reviewed articles in English were considered, and there were no date restrictions. Results were extracted and presented in tabular form to detail study protocols, characteristics, and outcomes. Bias in randomized controlled trials was determined with the RoB 2.0 tool. RESULTS: A total of 45 studies were included in the review, with 35 using a parallel group design and 10 using a cross-over design. Approximately half the studies used a single probiotic and the other half a multi-strain preparation. The probiotic dose ranged from 2 × 108 to 1 × 1011 colony forming units daily, and the length of intervention was between 7 and 150 days. Fewer than half the studies directly assessed gastrointestinal symptoms, gut permeability, or the gut microbiota. The sex ratio of participants was heavily weighted toward males, and only 3 studies exclusively investigated females. Low-level adverse events were reported in only 2 studies, although the methodology of reporting varied widely. The risk of bias was generally low, although details on randomization were lacking in some studies. CONCLUSION: There is a substantial body of research on the effects of probiotic supplementation in healthy athletes and physically active individuals. Considerable heterogeneity in probiotic selection and dosage as well as outcome measures has made clinical and mechanistic interpretation challenging for both health care practitioners and researchers. Attention to issues of randomization of participants, treatments and interventions, selection of outcomes, demographics, and reporting of adverse events will facilitate more trustworthy interpretation of probiotic study results and inform evidence-based guidelines.

18.
Eur J Sport Sci ; 22(5): 755-764, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33944684

RESUMO

As with much of science, the female athlete is under researched, particularly in the area of gastrointestinal (GI) physiology. Gut function is of pivotal importance to athletes in that it supports digestion and absorption of nutrients, as well as providing a barrier between the external environment and the circulation. While sex-derived differences in GI structure and function have been well characterised at rest, there remains a paucity of data examining this during exercise. The wider impact of the GI system has begun to be realised and it is now widely acknowledged to play a role in more systemic bodily systems. In the current review, we discuss localised issues including the GI structure, function, and microbiome of male and females. We also discuss GI-related symptoms experienced by athletes, highlight the differences in incidence between males and females, and discuss contributing factors. We then move beyond the gut to discuss wider biological processes that have been shown to have both sex-related differences and that are impacted by the GI system. Some of these areas include immune function and risk of illness, sleep, hormones, bone health and the gut-brain-axis. The magnitude of such effects and relationships is currently unknown but there is enough mechanistic data for future studies to consider a more central role that the gastrointestinal tract may play in overall female athlete health. HighlightsThere are both clear similarities and differences in male-female gastrointestinal structure and function.Females typically reported a greater prevalence of gastrointestinal symptoms at rest, in particular during menstruation, but not during exercise.The links between female microbiome, oestrogen, and systemic physiological and biological processes are yet to be fully elucidated.Many of the male-female differences seen (e.g. in immune function) may be, at least in part, influenced by such GI related differences.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Atletas , Exercício Físico/fisiologia , Feminino , Gastroenteropatias/epidemiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal , Humanos , Masculino
19.
J Appl Physiol (1985) ; 132(6): 1394-1406, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35446596

RESUMO

We examined the effects of carbohydrate (CHO) delivery form on exogenous CHO oxidation, gastrointestinal discomfort, and exercise capacity. In a randomized repeated-measures design [after 24 h of high CHO intake (8 g·kg-1) and preexercise meal (2 g·kg-1)], nine trained males ingested 120 g CHO·h-1 from fluid (DRINK), semisolid gel (GEL), solid jelly chew (CHEW), or a coingestion approach (MIX). Participants cycled for 180 min at 95% lactate threshold, followed by an exercise capacity test (150% lactate threshold). Peak rates of exogenous CHO oxidation (DRINK 1.56 ± 0.16, GEL 1.58 ± 0.13, CHEW 1.59 ± 0.08, MIX 1.66 ± 0.02 g·min-1) and oxidation efficiency (DRINK 72 ± 8%, GEL 72 ± 5%, CHEW 75 ± 5%, MIX, 75 ± 6%) were not different between trials (all P > 0.05). Despite ingesting 120 g·h-1, participants reported minimal symptoms of gastrointestinal distress across all trials. Exercise capacity was also not significantly different (all P > 0.05) between conditions (DRINK 446 ± 350, GEL 529 ± 396, CHEW 596 ± 416, MIX 469 ± 395 s). Data represent the first time that rates of exogenous CHO oxidation (via stable isotope methodology) have been simultaneously assessed with feeding strategies (i.e., preexercise CHO feeding and the different forms and combinations of CHO during exercise) commonly adopted by elite endurance athletes. We conclude that 120 g·h-1 CHO (in a 1:0.8 ratio of maltodextrin or glucose to fructose) is a practically tolerable strategy to promote high CHO availability and oxidation during exercise.NEW & NOTEWORTHY We demonstrate comparable rates of exogenous CHO oxidation from fluid, semisolid, solid, or a combination of sources. Considering the sustained high rates of total and exogenous CHO oxidation and relative lack of gastrointestinal symptoms, consuming 120 g CHO·h-1 appears to be a well-tolerated strategy to promote high CHO availability during exercise. Additionally, this is the first time that rates of exogenous CHO oxidation have been assessed with feeding strategies (e.g., coingestion of multiple CHO forms) typically reported by endurance athletes.


Assuntos
Frutose , Glucose , Glicemia , Carboidratos da Dieta , Exercício Físico , Humanos , Ácido Láctico , Masculino , Oxirredução , Resistência Física
20.
Front Nutr ; 9: 809983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350412

RESUMO

Probiotic supplementation, traditionally used for the prevention or treatment of a variety of disease indications, is now recognized in a variety of population groups including athletes and those physically active for improving general health and performance. However, experimental and clinical trials with probiotics commonly suffer from design flaws and different outcome measures, making comparison and synthesis of conclusions difficult. Here we review current randomized controlled trials (RCTs) using probiotics for performance improvement, prevention of common illnesses, or general health, in a specific target population (athletes and those physically active). Future RCTs should address the key elements of (1) properly defining and characterizing a probiotic intervention, (2) study design factors, (3) study population characteristics, and (4) outcome measures, that will allow valid conclusions to be drawn. Careful evaluation and implementation of these elements should yield improved trials, which will better facilitate the generation of evidence-based probiotic supplementation recommendations for athletes and physically active individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA