Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Adv Funct Mater ; 32(23): 2200986, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-36505976

RESUMO

Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers' mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in ß-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high ß-strand propensity and can mediate tight inter-ß-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger ß-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L-1 which is in line with requirements for economically feasible bulk scale production.

2.
Philos Trans A Math Phys Eng Sci ; 380(2237): 20210389, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36209809

RESUMO

The design of structures that can yield efficient sound insulation performance is a recurring topic in the acoustic engineering field. Special attention is given to panels, which can be designed using several approaches to achieve considerable sound attenuation. Previously, we have presented the concept of thickness-varying periodic plates with optimized profiles to inhibit flexural wave energy propagation. In this work, motivated by biological structures that present multiple locally resonant elements able to cause acoustic cloaking, we extend our shape optimization approach to design panels that achieve improved acoustic insulation performance using either thickness-varying profiles or locally resonant attachments. The optimization is performed using numerical models that combine the Kirchhoff plate theory and the plane wave expansion method. Our results indicate that panels based on locally resonant mechanisms have the advantage of being robust against variation in the incidence angle of acoustic excitation and, therefore, are preferred for single-leaf applications. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 2)'.


Assuntos
Acústica , Modelos Teóricos , Som
3.
Surg Endosc ; 36(12): 8797-8806, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35578046

RESUMO

BACKGROUND: Recently, in the field of abdominal wall repair surgery, some minimally invasive procedures introduced the use of staplers to provide a retromuscular prosthetic repair. However, to the knowledge of the authors, there are little data in the literature about the outcomes of stapled sutures adoption for midline reconstruction. This study aims to investigate the biomechanics of stapled sutures, simple (stapled), or oversewn (hybrid), in comparison with handsewn suture. From the results obtained, we tried to draw indications for their use in a clinical context. METHODS: Human cadaver fascia lata specimens, sutured (handsewn, stapled, or hybrid) or not, underwent tensile tests. The data on strength (maximal stress), ultimate strain (deformability), Young's modulus (rigidity), and dissipated specific energy (ability to absorb mechanical energy up to the breaking point) were recorded for each type of specimens and analyzed. RESULTS: Stapled and hybrid suture showed a significantly higher strength (handsewn 0.83 MPa, stapled 2.10 MPa, hybrid 2.68 MPa) and a trend toward a lower ultimate strain as compared to manual sutures (handsewn 344%, stapled 249%, hybrid 280%). Stapled and hybrid sutures had fourfold higher Young's modulus as compared to handsewn sutures (handsewn 1.779 MPa, stapled 7.374 MPa, hybrid 6.964 MPa). Handsewn and hybrid sutures showed significantly higher dissipated specific energy (handsewn 0.99 mJ-mm3, stapled 0.73 mJ-mm3, hybrid 1.35 mJ-mm3). CONCLUSION: Stapled sutures can resist high loads, but are less deformable and rigid than handsewn suture. This suggests a safer employment in case of small defects or diastasis (< W1 in accord to EHS classification), where the presumed tissutal displacement is minimal. Oversewing a stapled suture improves its efficiency, becoming crucial in case of larger defects (> W1 in accord to EHS classification) where the expected tissutal displacement is maximal. Hybrid sutures seem to be a good compromise.


Assuntos
Proctocolectomia Restauradora , Grampeamento Cirúrgico , Humanos , Técnicas de Sutura , Suturas , Proctocolectomia Restauradora/métodos , Anastomose Cirúrgica/métodos
4.
Small ; 17(35): e2100909, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302438

RESUMO

Locating and manipulating nano-sized objects to drive motion is a time and effort consuming task. Recent advances show that it is possible to generate motion without direct intervention, by embedding the source of motion in the system configuration. In this work, an alternative manner to controllably displace nano-objects without external manipulation is demonstrated, by employing spiral-shaped carbon nanotube (CNT) and graphene nanoribbon structures (GNR). The spiral shape contains smooth gradients of curvature, which lead to smooth gradients of bending energy. It is shown that these gradients as well as surface energy gradients can drive nano-oscillators. An energy analysis is also carried out by approximating the carbon nanotube to a thin rod and how torsional gradients can be used to drive motion is discussed. For the nanoribbons, the role of layer orientation is also analyzed. The results show that motion is not sustainable for commensurate orientations, in which AB stacking occurs. For incommensurate orientations, friction almost vanishes, and in this instance, the motion can continue even if the driving forces are not very high. This suggests that mild curvature gradients, which can already be found in existing nanostructures, could provide mechanical stimuli to direct motion.


Assuntos
Grafite , Nanoestruturas , Nanotubos de Carbono , Fricção
5.
Small ; 17(47): e2104487, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34676978

RESUMO

Friction-induced energy dissipation impedes the performance of nanomechanical devices. Nevertheless, the application of graphene is known to modulate frictional dissipation by inducing local strain. This work reports on the nanomechanics of graphene conformed on different textured silicon surfaces that mimic the cogs of a nanoscale gear. The variation in the pitch lengths regulates the strain induced in capped graphene revealed by scanning probe techniques, Raman spectroscopy, and molecular dynamics simulation. The atomistic visualization elucidates asymmetric straining of CC bonds over the corrugated architecture resulting in distinct friction dissipation with respect to the groove axis. Experimental results are reported for strain-dependent solid lubrication which can be regulated by the corrugation and leads to ultralow frictional forces. The results are applicable for graphene covered corrugated structures with movable components such as nanoelectromechanical systems, nanoscale gears, and robotics.


Assuntos
Grafite , Membrana Celular , Fricção , Simulação de Dinâmica Molecular , Silício
6.
Soft Matter ; 17(34): 7903-7913, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34369547

RESUMO

Living systems are built of multiscale-composites: materials formed of components with different properties that are assembled in complex micro- and nano-structures. Such biological multiscale-composites often show outstanding physical properties that are unachieved by artificial materials. A major scientific goal is thus to understand the assembly processes and the relationship between structure and function in order to reproduce them in a new generation of biomimetic high-performance materials. Here, we tested how the assembly of spider silk nano-fibres (i.e. glue coated 0.5 µm thick fibres produced by so-called piriform glands) into different micro-structures correlates with mechanical performance by empirically and numerically exploring the mechanical behaviour of line anchors in an orb weaver, a hunting spider and two ancient web builders. We demonstrate that the anchors of orb weavers exhibit outstanding mechanical robustness with minimal material use by the indirect attachment of the silk line to the substrate through a soft domain ('bridge'). This principle can be used to design new artificial high-performance attachment systems.


Assuntos
Seda , Aranhas , Animais
7.
Phys Chem Chem Phys ; 23(35): 19173-19187, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34357365

RESUMO

Nanomaterials made of cerium oxides CeO2 and Ce2O3 have a broad range of applications, from catalysts in automotive, industrial or energy operations to promising materials to enhance hadrontherapy effectiveness in oncological treatments. To elucidate the physico-chemical mechanisms involved in these processes, it is of paramount importance to know the electronic excitation spectra of these oxides, which are obtained here through high-accuracy linear-response time-dependent density functional theory calculations. In particular, the macroscopic dielectric response functions  of both bulk CeO2 and Ce2O3 are derived, which compare remarkably well with the available experimental data. These results stress the importance of appropriately accounting for local field effects to model the dielectric function of metal oxides. Furthermore, we reckon the energy loss functions Im(-1/) of the materials, including the accurate evaluation of the momentum transfer dispersion from first-principles calculations. In this respect, by using Mermin-type parametrization we are able to model the contribution of different electronic excitations to the dielectric loss function. Finally, from the knowledge of the electron inelastic mean free path, together with the elastic mean free path provided by the relativistic Mott theory, we carry out statistical Monte Carlo (MC) electron transport simulations to reproduce the major features of the reported experimental reflection electron energy loss (REEL) spectra of cerium oxides. The good agreement with REEL experimental data strongly supports our approach based on MC modelling, whose main inputs were obtained using ab initio calculated electronic excitation spectra in a broad range of momentum and energy transfers.

8.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202571

RESUMO

Hybrid nanomaterials fabricated by the heterogeneous integration of 1D (carbon nanotubes) and 2D (graphene oxide) nanomaterials showed synergy in electrical and mechanical properties. Here, we reported the infiltration of carboxylic functionalized single-walled carbon nanotubes (C-SWNT) into free-standing graphene oxide (GO) paper for better electrical and mechanical properties than native GO. The stacking arrangement of GO sheets and its alteration in the presence of C-SWNT were comprehensively explored through scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. The C-SWNTs bridges between different GO sheets produce a pathway for the flow of electrical charges and provide a tougher hybrid system. The nanoscopic surface potential map reveals a higher work function of the individual functionalised SWNTs than surrounded GO sheets showing efficient charge exchange. We observed the enhanced conductivity up to 50 times and capacitance up to 3.5 times of the hybrid structure than the GO-paper. The laminate of polystyrene composites provided higher elastic modulus and mechanical strength when hybrid paper is used, thus paving the way for the exploitation of hybrid filler formulation in designing polymer composites.


Assuntos
Condutividade Elétrica , Grafite/química , Nanotubos de Carbono/química , Papel , Poliestirenos/química
9.
Molecules ; 25(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604727

RESUMO

Spider silks present extraordinary mechanical properties, which have attracted the attention of material scientists in recent decades. In particular, the strength and the toughness of these protein-based materials outperform the ones of many man-made fibers. Unfortunately, despite the huge interest, there is an absence of statistical investigation on the mechanical properties of spider silks and their related size effects due to the length of the fibers. Moreover, several spider silks have never been mechanically tested. Accordingly, in this work, we measured the mechanical properties and computed the Weibull parameters for different spider silks, some of them unknown in the literature. We also measured the mechanical properties at different strain rates for the dragline of the species Cupiennius salei. For the same species, we measured the strength and Weibull parameters at different fiber lengths. In this way, we obtained the spider silk scaling laws directly and according to Weibull's prediction. Both length and strain rates affect the mechanical properties of spider silk, as rationalized by Weibull's statistics.


Assuntos
Seda/fisiologia , Aranhas/metabolismo , Animais , Fenômenos Biomecânicos , Modelos Estatísticos
10.
Opt Express ; 26(4): 4204-4218, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475273

RESUMO

In this work, we analyze the role of strain on a set of silicon racetrack resonators presenting different orientations with respect to the applied strain. The strain induces a variation of the resonance wavelength, caused by the photoelastic variation of the material refractive index as well as by the mechanical deformation of the device. In particular, the mechanical deformation alters both the resonator perimeter and the waveguide cross-section. Finite element simulations taking into account all these effects are presented, providing good agreement with experimental results. By studying the role of the resonator orientation we identify interesting features, such as the tuning of the resonance shift from negative to positive values and the possibility of realizing strain insensitive devices.

11.
Soft Matter ; 14(26): 5509-5518, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29923589

RESUMO

Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural fibrillar systems, such as those observed in beetles or geckos. However, these animals also display complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we study the influence of hierarchical fibrillar architectures on the load distribution over the contact elements of the adhesive system, and the corresponding delamination behaviour. We present an analytical model to derive the load distribution in a fibrillar system loaded in shear, including hierarchical splitting of contacts, i.e. a "hierarchical shear-lag" model that generalizes the well-known shear-lag model used in mechanics. The influence on the detachment process is investigated introducing a numerical procedure that allows the derivation of the maximum delamination force as a function of the considered geometry, including statistical variability of local adhesive energy. Our study suggests that contact splitting generates improved adhesion only in the ideal case of extremely compliant contacts. In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with hierarchical architectures to counterbalance high load concentrations resulting from contact unit size reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load distributions. We show that these results can be summarized in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with hierarchical reinforcements.

12.
Nature ; 482(7383): 72-6, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22297972

RESUMO

Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider's many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress--involving softening at a yield point and substantial stiffening at large strain until failure--as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web's structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.


Assuntos
Seda/química , Aranhas , Resistência à Tração , Animais , Fenômenos Biomecânicos , Elasticidade , Dureza , Modelos Biológicos , Aranhas/fisiologia , Vento
13.
Int J Mol Sci ; 19(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445700

RESUMO

The regeneration of dental tissues is a still an unmet clinical need; in fact, no therapies have been completely successful in regenerating dental tissue complexes such as periodontium, which is also due to the lack of scaffolds that are able to guide and direct cell fate towards the reconstruction of different mineralized and non-mineralized dental tissues. In this respect, the present work develops a novel multifunctional hybrid scaffold recapitulating the different features of alveolar bone, periodontal ligament, and cementum by integrating the biomineralization process, and tape casting and electrospinning techniques. The scaffold is endowed with a superparamagnetic ability, thanks to the use of a biocompatible, bioactive superparamagnetic apatite phase, as a mineral component that is able to promote osteogenesis and to be activated by remote magnetic signals. The periodontal scaffold was obtained by engineering three different layers, recapitulating the relevant compositional and microstructural features of the target tissues, into a monolithic multifunctional graded device. Physico-chemical, morphological, and ultrastructural analyses, in association with preliminary in vitro investigations carried out with mesenchymal stem cells, confirm that the final scaffold exhibits a good mimicry of the periodontal tissue complex, with excellent cytocompatibility and cell viability, making it very promising for regenerative applications in dentistry.


Assuntos
Nanopartículas de Magnetita/química , Periodonto/fisiologia , Regeneração/fisiologia , Alicerces Teciduais/química , Processo Alveolar/fisiologia , Animais , Morte Celular , Linhagem Celular , Sobrevivência Celular , Colágeno/química , Cemento Dentário/fisiologia , Cavalos , Camundongos Endogâmicos BALB C , Ligamento Periodontal/fisiologia , Difração de Raios X
14.
Biomed Microdevices ; 19(3): 51, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28577265

RESUMO

Free-standing films with sub-micrometric thickness, composed of soft polymers and functional nanostructures are promising candidates for many potential applications in the biomedical field, such as reduced port abdominal surgery. In this work, freely suspended poly(L-lactic acid) nanofilms with controlled morphology embedding superparamagnetic iron oxide nanoparticles were fabricated by spin-coating deposition. The mechanical properties of magnetic nanofilms were investigated by Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) test. Our results show that these freely suspended nanocomposite nanofilms are highly flexible and deformable, with Young's moduli of few GPa. Since they can be handled in liquid with syringes, a quantitative description of the nanofilms behavior during the manipulation with clinically applicable needles has been also provided. These magnetic nanofilms, remotely controllable by external electromagnetic fields, have potential applications in minimally invasive surgery as injectable nanopatches on inner organs wall. Graphical abstract ᅟ.


Assuntos
Nanopartículas de Magnetita/química , Membranas Artificiais , Poliésteres/química
15.
Int J Mol Sci ; 17(10)2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27681725

RESUMO

Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions.

16.
Langmuir ; 30(4): 1123-33, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24364755

RESUMO

We present a theoretical and numerical analysis of the mechanical behavior of self-healing materials using an analytical model and numerical calculations both based on a Hierarchical Fiber Bundle Model, and applying them to graphene- or carbon-nanotube-based materials. The self-healing process can be described essentially through a single parameter, that is, the healing rate, but numerical simulations also highlight the influence of the location of the healing process on the overall strengthening and toughening of the material. The role of hierarchy is discussed, showing that full-scale hierarchical structures can in fact acquire more favorable properties than smaller, nonhierarchical ones through interaction with the self-healing process, thus inverting the common notion in fracture mechanics that specimen strength increases with decreasing size. Further, the study demonstrates that the developed analytical and numerical tools can be useful to develop strategies for the optimization of strength and toughness of synthetic bioinspired materials.


Assuntos
Grafite/química , Modelos Químicos , Nanotubos de Carbono/química , Materiais Biomiméticos , Simulação por Computador , Estresse Mecânico
17.
J Funct Biomater ; 15(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786646

RESUMO

Biodegradable vascular stents (BVS) are deemed as great potential alternatives for overcoming the inherent limitations of permanent metallic stents in the treatment of coronary artery diseases. The current study aimed to comprehensively compare the mechanical behaviors of four poly(lactic acid) (PLA) BVS designs with varying geometries via numerical methods and to clarify the optimal BVS selection. Four PLA BVS (i.e., Absorb, DESolve, Igaki-Tamai, and Fantom) were first constructed. A degradation model was refined by simply including the fatigue effect induced by pulsatile blood pressures, and an explicit solver was employed to simulate the crimping and degradation behaviors of the four PLA BVS. The degradation dynamics here were characterized by four indices. The results indicated that the stent designs affected crimping and degradation behaviors. Compared to the other three stents, the DESolve stent had the greatest radial stiffness in the crimping simulation and the best diameter maintenance ability despite its faster degradation; moreover, the stent was considered to perform better according to a pilot scoring system. The current work provides a theoretical method for studying and understanding the degradation dynamics of the PLA BVS, and it could be helpful for the design of next-generation BVS.

18.
Med Biol Eng Comput ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008187

RESUMO

The mechanics of the trabecular bone is related to its structure; this work aimed to propose a simple projection method to clarify the correlation between the principal mechanical direction (PMD) and the principal microstructural direction (PMSD) of trabecular bones from osteoporotic femoral heads. A total of 529 trabecular cubes were cropped from five osteoporotic femoral heads. The micro computed tomography (µCT) sequential images of each cube were first projected onto the three Cartesian coordinate planes to have three overlapped images, and the trabecular orientation distribution in the three images was analyzed. The PMSD corresponding to the greatest distribution frequency of the trabecular orientation in the three images was defined. Then, the voxel finite element (FE) models of the cubes were reconstructed and simulated to obtain their compliance matrices, and the matrices were subjected to transversal rotation to find their maximum elastic constants. The PMD corresponding to the maximum elastic constant was defined. Subsequently, the correlation of the defined PMSD and PMD was analyzed. The results showed that PMSD and PMD of the trabecular cubes did not show a significant difference at the xy- and yz-planes except that at the zx-plane. Despite this, the mean PMSD-PMD deviations at the three coordinate planes were close to 0°, and the PMSD-PMD fitting to the line PMSD = PMD demonstrated their high correlation. This study might be helpful to identify the loading direction of anisotropic trabecular bones in experiments by examining the PMSD and also to guide bone scaffold design for bone tissue repair.

19.
Nat Commun ; 15(1): 5863, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997272

RESUMO

Fail-safe design of devices requires robust integrity assessment procedures which are still absent for 2D materials, hence affecting transfer to applications. Here, a combined on-chip tension and cracking method, and associated data reduction scheme have been developed to determine the fracture toughness and strength of monolayer-monodomain-freestanding graphene. Myriads of specimens are generated providing statistical data. The crack arrest tests provide a definitive fracture toughness of 4.4 MPa m . Tension on-chip provides Young's modulus of 950 GPa, fracture strain of 11%, and tensile strength up to 110 GPa, reaching a record of stored elastic energy ~6 GJ m-3 as confirmed by thermodynamics and quantized fracture mechanics. A ~ 1.4 nm crack size is often found responsible for graphene failure, connected to 5-7 pair defects. Micron-sized graphene membranes and smaller can be produced defect-free, and design rules can be based on 110 GPa strength. For larger areas, a fail-safe design should be based on a maximum 57 GPa strength.

20.
Small ; 9(16): 2747-56, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23585296

RESUMO

Millions of years of evolution have adapted spider webs to achieve a range of properties, including the well-known capture of prey, with efficient use of materials. One feature that remains poorly understood is the attachment disc, a network of silk fibers that mechanically anchors a web to its environment. Experimental observations suggest that one possible attachment disc adheres to a substrate through multiple symmetrically branched structures composed of sub-micrometer scale silk fibers. Here, a theoretical model is used to explore the adaptation of the strength of attachment of such an anchorage, and complementary mesoscale simulations are applied to demonstrate a novel mechanism of synergetic material and structural optimization, such that the maximum anchorage strength can be achieved regardless of the initial anchor placement or material type. The optimal delamination (peeling) angle is facilitated by the inherent extensibility of silk, and is attained automatically during the process of delamination. This concept of self-optimizing peeling angle suggests that attachment discs do not require precise placement by the spider, irrespective of adhesion strength. Additional hierarchical branching of the anchorage increases efficiency, where both the delamination force and toughness modulus increase with a splitting of the cross-sectional area.


Assuntos
Seda/química , Seda/fisiologia , Aranhas/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Teóricos , Resistência à Tração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA