Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Parasitology ; 149(4): 542-554, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35042575

RESUMO

Fibricola and Neodiplostomum are diplostomid genera with very similar morphology that are currently separated based on their definitive hosts. Fibricola spp. are normally found in mammals, while Neodiplostomum spp. typically parasitize birds. Previously, no DNA sequence data was available for any member of Fibricola. We generated nuclear ribosomal and mtDNA sequences of Fibricola cratera (type-species), Fibricola lucidum and 6 species of Neodiplostomum. DNA sequences were used to examine phylogenetic interrelationships among Fibricola and Neodiplostomum and re-evaluate their systematics. Molecular phylogenies and morphological study suggest that Fibricola should be considered a junior synonym of Neodiplostomum. Therefore, we synonymize the two genera and transfer all members of Fibricola into Neodiplostomum. Specimens morphologically identified as Neodiplostomum cratera belonged to 3 distinct phylogenetic clades based on mitochondrial data. One of those clades also included sequences of specimens identified morphologically as Neodiplostomum lucidum. Further study is necessary to resolve the situation regarding the morphology of N. cratera. Our results demonstrated that some DNA sequences of N. americanum available in GenBank originate from misidentified Neodiplostomum banghami. Molecular phylogentic data revealed at least 2 independent host-switching events between avian and mammalian hosts in the evolutionary history of Neodiplostomum; however, the directionality of these host-switching events remains unclear.


Assuntos
Platelmintos , Trematódeos , Animais , Aves , DNA Mitocondrial/genética , Mamíferos , Filogenia , Platelmintos/genética
2.
Syst Parasitol ; 97(5): 409-439, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32813221

RESUMO

The Proterodiplostomidae Dubois, 1936 is a relatively small family of diplostomoidean digeneans parasitising the intestines of reptilian hosts associated with freshwater environments in tropical and subtropical regions. The greatest diversity of proterodiplostomids is found in crocodilians, although some parasitise snakes and turtles. According to the most recent revision, the Proterodiplostomidae included 17 genera within 5 subfamilies. Despite the complex taxonomic structure of the family, availability of testable morphology-based phylogenetic hypotheses and ancient hosts, molecular phylogenetic analyses of the group were practically lacking. Herein, we use novel DNA sequence data of the nuclear lsrRNA gene and mitochondrial cox1 gene from a broad range of proterodiplostomid taxa obtained from crocodilian, fish, and snake hosts on four continents to test the monophyly of the family and evaluate the present morphology-based classification system of the Proterodiplostomidae in comparison with the molecular phylogeny. This first detailed phylogeny for the Proterodiplostomidae challenges the current systematic framework. Combination of molecular phylogenetic data with examination of freshly collected quality specimens and re-evaluation of morphological criteria resulted in a number of systematic and nomenclatural changes along with a new phylogeny-based classification of the Proterodiplostomidae. As the result of our molecular and morphological analyses: (i) the current subfamily structure of the Proterodiplostomidae is abolished; (ii) three new genera, Paraproterodiplostomum n. g., Neocrocodilicola n. g. and Proteroduboisia n. g., are described and Pseudoneodiplostomoides Yamaguti, 1954 is restored and elevated from subgenus to genus level; (iii) two new species, Paraproterodiplostomum currani n. g., n. sp. and Archaeodiplostomum overstreeti n. sp., are described from the American alligator in Mississippi, USA. Comparison of the structure of terminal ducts of the reproductive system in all proterodiplostomid genera did not support the use of these structures for differentiation among subfamilies (or major clades) within the family, although they proved to be useful for distinguishing among genera and species. Our study includes the first report of proterodiplostomids from Australia and the first evidence of a snake acting as a paratenic host for a proterodiplostomid. A key to proterodiplostomid genera is provided. Questions of proterodiplostomid-host associations parasitic in crocodilians are discussed in connection with their historical biogeography. Our molecular phylogeny of the Proterodiplostomidae closely matches the current molecular phylogeny of crocodilians. Directions for future studies of the Proterodiplostomidae are outlined.


Assuntos
Filogenia , Répteis/parasitologia , Trematódeos/classificação , Animais , DNA de Helmintos/genética , Especificidade da Espécie , Trematódeos/anatomia & histologia , Trematódeos/genética
3.
Parasitol Res ; 118(10): 2781-2787, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31493063

RESUMO

Crassiphiala is a monotypic genus of diplostomid digeneans and is the type genus of the subfamily Crassiphialinae. The type species Crassiphiala bulboglossa parasitizes kingfishers in the Nearctic and has a Neascus-type metacercaria that encysts on fish intermediate hosts, often causing black spot disease. While recent molecular phylogenetic studies included some members of the Crassiphialinae, no DNA sequence data of Crassiphiala is currently available. Our molecular and morphological study of adult and larval crassiphialines from the Americas revealed the presence of at least three lineages of Crassiphiala from the Nearctic and two lineages from the Neotropics. This is the first record of Crassiphiala from the Neotropics. Herein, we provide the first molecular phylogeny of the Diplostomoidea that includes Crassiphiala. Our data revealed 0.2-2.4% divergence among 28S sequences and 11-19.8% among CO1 sequences of lineages of Crassiphiala. The results of our analyses did not support the monophyly of Crassiphialinae. Our results clearly demonstrated that the diversity of Crassiphiala has been underestimated.


Assuntos
Doenças dos Peixes/parasitologia , Filogenia , Trematódeos/classificação , Trematódeos/isolamento & purificação , Infecções por Trematódeos/veterinária , Animais , Biodiversidade , Peixes/parasitologia , Larva/classificação , Larva/genética , Larva/crescimento & desenvolvimento , Metacercárias/classificação , Metacercárias/genética , Metacercárias/crescimento & desenvolvimento , Metacercárias/isolamento & purificação , Trematódeos/genética , Trematódeos/crescimento & desenvolvimento , Infecções por Trematódeos/parasitologia
4.
Syst Parasitol ; 94(1): 21-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062986

RESUMO

Three new psilostomid genera, Byrdtrema n. g., Longisaccus n. g. and Macracetabulum n. g., each with a single species, are described from ducks, Aix sponsa (L.) and Bucephala albeola (L.) in North America. Byrdtrema n. g. and Macracetabulum n. g. possess a bipartite seminal vesicle and share this character with four psilostomid genera, Grysoma Byrd, Bogitsh & Maples, 1961, Neopsilotrema Kudlai, Pulis, Kostadinova & Tkach, 2016, Psilostomum Looss, 1899 and Psilotornus Byrd & Prestwood, 1969. Byrdtrema n. g. differs from Macracetabulum n. g. in the shape of the body (elongate vs elongate-oval); the position of the ventral sucker (in first third of body vs just pre-equatorial); the shorter forebody; as well as in the smaller size of the eggs in relation to body length. Both new genera differ from (i) Grysoma by the nature of the vitellarium (large, compact follicles with small vitelline cells vs weakly defined follicles with large vitelline cells, respectively) and the smaller size of the eggs in relation to body length; (ii) Psilostomum in the posterior extend of the cirrus-sac in relation to ventral sucker (slightly posterior vs more posterior), the location of the genital pore (at the level of oesophagus vs just postbifurcal), the shorter length of uterine and longer post-testicular fields in relation to body length, and the anterior limits of vitellarium (at the level of ventral sucker vs posterior to ventral sucker); (iii) Psilotornus by the presence of a muscular pharynx (vs absent or rudimentary) and the location of the cirrus-sac (antero-dorsal to ventral sucker or more posterior vs entirely anterior to ventral sucker) and ovary (in hindbody vs in forebody). Byrdtrema n. g. differs from Neopsilotrema in the shape of the body (elongate vs subspherical to elongate-oval) and ventral sucker (elongate-oval vs subspherical to transversely oval), the shorter forebody and smaller eggs in relation to body length. Macracetabulum n. g. differs from Neopsilotrema by the shape of the ventral sucker (elongate-oval vs subspherical to transversely oval), the anterior limits of vitellarium (level of middle of ventral sucker vs level of intestinal bifurcation or anterior testis); and the slightly smaller size of eggs in relation to body length. Among the psilostomid genera, Longisaccus n. g. shows close affinities to Psilochasmus Lühe, 1909 in the presence of the long cirrus-sac and tubular internal seminal vesicle but can be clearly distinguished from the latter by the absence of the retractile tail-like process. In combination with molecular data, the above differences justify the recognition of three new genera. A key to the genera of the Psilostomidae is provided.


Assuntos
Patos/parasitologia , Trematódeos/classificação , Animais , Tamanho Corporal , América do Norte , Especificidade da Espécie , Trematódeos/anatomia & histologia
5.
Syst Parasitol ; 93(4): 307-19, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27095661

RESUMO

Neopsilotrema n. g. (Digenea: Psilostomidae) and three new species of psilostomid digeneans are described from birds in North America and Europe: Neopsilotrema lakotae n. sp. from Aythya americana (Eyton) in North Dakota, USA, Neopsilotrema affine n. sp. from Aythya affinis (Eyton) in Minnesota, USA and Neopsilotrema lisitsynae n. sp. from Anas crecca L. in Kherson Region, Ukraine. Neopsilotrema n. g. shares a bipartite seminal vesicle with only three genera within the Psilostomidae, Psilotornus Byrd & Prestwood, 1969, Psilostomum Looss, 1899 and Grysoma Byrd, Bogitsh & Maples, 1961. The new genus differs from Psilotornus in the presence of a muscular pharynx and a massive ventral sucker; the location of the cirrus-sac in relation to the ventral sucker and more posterior location of ovary; the nature of the vitellarium (i.e. comprising large, compact follicles with small vitelline cells vs weakly defined follicles with large vitelline cells); a proportionately shorter forebody; and in parasitisation in anseriform (vs passeriform) birds. Differences between the new genus and Psilostomum comprise the shape of the body, the relative size of the suckers, somewhat longer forebody and a more anterior location of the testes. Neopsilotrema n. g. differs from Grysoma in the relative size of the suckers, the degree of development of prostatic cells, the nature of the vitellarium and the size of the eggs in relation to body length. The European species Neopsilotrema lisitsynae n. sp. is distinguished from its congeners in having a longer, narrower and distinctly more elongate body with a longer post-testicular region and anterior limits of the vitelline fields posterior to ventral sucker. The two North American forms, Neopsilotrema lakotae n. sp. and Neopsilotrema affine n. sp., are cryptic species with largely overlapping metrical data; these are distinguished by comparing genetic data. The phylogenetic hypotheses for the Psilostomidae developed from sequence data analyses based on partial 28S rDNA support the erection of the new genus and the distinction of the three new species. Grysoma marilae (Price, 1942) agrees more closely with the generic diagnosis of Neopsilotrema, especially in relation to the size and shape of the body, the relative length of the forebody and post-testicular field, the structure of the vitellarium, the location of the reproductive organs and the sucker ratio. Consequently, it is here transferred to the new genus as Neopsilotrema marilae (Price, 1942) n. comb.


Assuntos
Patos/parasitologia , Trematódeos/classificação , Animais , Dados de Sequência Molecular , América do Norte , Filogenia , RNA Ribossômico 28S/genética , Especificidade da Espécie , Trematódeos/anatomia & histologia , Trematódeos/genética , Ucrânia
6.
Folia Parasitol (Praha) ; 622015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25995330

RESUMO

Forticulcita platana sp. n. and Forticulcita apiensis sp. n. are described from Mugil liza Valenciennes in Argentina, and from Mugil cephalus Linnaeus in Salt Springs, Florida, USA, respectively. Supplemental material relating to the hermaphroditic sac of Forticulcita gibsoni Blasco-Costa, Montero, Balbuena, Raga et Kostadinova, 2009 is provided from a specimen isolated from M. cephalus off Crete, Greece. Forticulcita platana can be distinguished from all species of Forticulcita Overstreet, 1982 except F. gibsoni, based on possessing small pads or gland cells along the hermaphroditic duct. It can be differentiated from that species in possessing a hermaphroditic sac that is one and a half to two times longer than wide rather than one that is approximately three times longer than wide, longer eggs (44-52 µm rather than 34-44 µm long) and a shorter post-testicular space (< 45% of the body length). Forticulcita apiensis can be differentiated from the other species of Forticulcita in possessing a testis that is shorter than or equal to the pharynx rather than one that is longer than the pharynx. Xiha gen. n. is erected for Dicrogaster fastigatus Thatcher et Sparks, 1958 as Xiha fastigata (Thatcher et Sparks, 1958) comb. n., and we tentatively consider Dicrogaster fragilis Fernández Bargiela, 1987 to be Xiha fragilis (Fernández Bargiela, 1987) comb. n. The new genus fits within the concept of Forticulcitinae Blasco-Costa, Balbuena, Kostadinova et Olson, 2009 in having a vitellarium comprised of a single elongate to subspherical mass. Xiha can be differentiated from Forticulcita in having spines lining the hermaphroditic duct, or intromittent organ. A Bayesian inference analysis of partial 28S rDNA sequences of the two New World species of Forticulcita, Xiha fastigata and previously published haploporids places Xiha fastigata within the Forticulcitinae and sister to Forticulcita. Amended diagnoses for the subfamily and for Dicrogaster Looss, 1902 are provided.

7.
Syst Parasitol ; 90(3): 221-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25693456

RESUMO

Drepanocephalus auritus n. sp. is described based on specimens from the double-crested cormorant Phalacrocorax auritus (Lesson) in North America. The new species differs from its congeners in its very narrow, elongate body, long uterine field and widely separated testes. Sequences of the nuclear rRNA gene cluster, spanning the 3' end of the nuclear ribosomal 18S rRNA gene, internal transcribed spacer region (ITS1+5.8S gene+ITS2) and partial 28S gene (2,345 bp), were identical in specimens collected from North Dakota, Minnesota and Mississippi, USA. Sequences of the 651 bp long fragment of the mitochondrial cox1 gene exhibited very low intraspecific variability (< 1%). Comparisons of the newly-generated sequences with those available in the GenBank indicate that the sequences from North America published under the name D. spathans Dietz, 1909 in fact represent D. auritus n. sp.


Assuntos
Aves/parasitologia , Echinostomatidae/classificação , Animais , DNA de Helmintos/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Echinostomatidae/anatomia & histologia , Echinostomatidae/genética , Echinostomatidae/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/genética , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , América do Norte , Especificidade da Espécie
8.
Syst Parasitol ; 90(1): 53-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25557747

RESUMO

Euparyphium capitaneum Dietz, 1909, the type-species of the genus Euparyphium Dietz, 1909, is described on the basis of material collected from the type-host Anhinga anhinga (L.) from Pascagoula River, which drains into the northern coast of the Gulf of Mexico. Combination of light and scanning electron microscopy observations of freshly collected and properly fixed specimens in our study has allowed us to provide novel information on the morphology and topology of the reproductive systems and other morphological features of the species. A Bayesian inference analysis based on the newly-obtained partial sequence of the nuclear 28S rRNA gene for E. capitaneum and 24 previously published sequences from the superfamily Echinostomatoidea Looss, 1899 provided evidence supporting the distinct status of the genera Euparyphium and Isthmiophora Lühe, 1909.


Assuntos
Echinostomatidae/classificação , Filogenia , Animais , Aves/parasitologia , Echinostomatidae/genética , Echinostomatidae/ultraestrutura , México , Microscopia Eletrônica de Varredura , Mississippi , Dados de Sequência Molecular , RNA Ribossômico 28S/genética , Rios , Especificidade da Espécie
9.
Folia Parasitol (Praha) ; 61(3): 223-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25065128

RESUMO

Bentholebouria colubrosa gen. n. et sp. n. (Digenea: Opecoelidae) is described in the wenchman, Pristipomoides aquilonaris (Goode et Bean), from the eastern Gulf of Mexico, and new combinations are proposed: Bentholebouria blatta (Bray et Justine, 2009) comb. n., Bentholebouria longisaccula (Yamaguti, 1970) comb. n., Bentholebouria rooseveltiae (Yamaguti, 1970) comb. n., and Bentholebouria ulaula (Yamaguti, 1970) comb. n. The new genus is morphologically similar to Neolebouria Gibson, 1976, but with a longer cirrus sac, entire testes, a rounded posterior margin with a cleft, and an apparent restriction to the deepwater snappers. Morphologically, the new species is closest to B. blatta from Pristipomoides argyrogrammicus (Valenciennes) off New Caledonia but can be differentiated by the nature of the internal seminal vesicle (2-6 turns or loops rather than constrictions), a longer internal seminal vesicle (occupying about 65% rather than 50% of the cirrus sac), a cirrus sac that extends further into the hindbody (averaging 136% rather than 103% of the distance from the posterior margin of the ventral sucker to the ovary), and a narrower body (27% rather than 35% mean width as % of body length). A Bayesian inference analysis of partial sequence of the 28S rDNA from Neolebouria lanceolata (Price, 1934), Cainocreadium lintoni (Siddiqi et Cable, 1960), Hamacreadium mutabile Linton, 1910, Opecoeloides fimbriatus (Linton, 1910), Podocotyloides brevis Andres et Overstreet, 2013, the new species, and previously published comparable sequences from 10 opecoelid species revealed two clades. One clade includes deep-sea (> or = 200 m) and freshwater fish opecoelids + Opecoeloides Bremser in Rudolphi, 1819, and a second clade included those opecoelids from shallow-water marine, perciform fishes.


Assuntos
Doenças dos Peixes/parasitologia , Perciformes , Filogenia , Trematódeos/classificação , Trematódeos/genética , Animais , RNA Ribossômico 28S , Especificidade da Espécie , Trematódeos/isolamento & purificação
10.
Syst Parasitol ; 89(3): 185-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25301509

RESUMO

Litosaccus n. g. is erected for Paralecithobotrys brisbanensis Martin, 1974 n. comb. for which an amended description is given. The new genus is morphologically similar to the haploporine Lecithobotrys Looss, 1902 but with a more elongate and cylindrical body; an infundibuliform oral sucker; a thin-walled hermaphroditic sac; a shallow genital atrium; and unequal, cylindrical and elongated caeca. It also resembles Pseudolecithobotrys Blasco-Costa, Gibson, Balbuena, Raga & Kostadinova, 2009, but the only member of that genus has a hermaphroditic sac that is twice the length of the ventral sucker, a hermaphroditic duct with intensely-staining cuboidal cells, an elongate testis, and single or paired caeca. A Bayesian inference analysis of partial 28S rDNA sequences of L. brisbanensis and 24 other haploporoids revealed that L. brisbanensis grouped with other haploporines and placed Intromugil Overstreet & Curran, 2005 in a clade with the chalcinotrematine Saccocoelioides Szidat, 1954 rather than the other seven tested waretrematine species. This analysis represents the first phylogenetic study of the Haploporidae Nicoll, 1914 that incorporates a haploporine from outside of the Mediterranean Sea.


Assuntos
Filogenia , Trematódeos/classificação , Animais , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Queensland , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Especificidade da Espécie , Trematódeos/anatomia & histologia , Trematódeos/genética
11.
Syst Parasitol ; 84(2): 167-91, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299754

RESUMO

Species of the Haploporidae Nicoll, 1914 with elaborate muscularisation of the oral sucker belong in three trematode genera, including three new species and a new genus from the intestine of fishes in Australian waters. Spiritestis Nagaty, 1948 is resurrected and S. herveyensis n. sp. is described from the mullet Moolgarda seheli (Forsskål) collected in Hervey Bay, Queensland, Australia; the latter differs from S. arabii Nagaty, 1948 in that the position of the genital pore is pharyngeal rather than post-pharyngeal and the geographical range is off Australia rather than the Red Sea. A new genus is proposed for two new species, with a uniquely ornamented oral sucker, which infect Australian scatophagids. Members of Capitimitta n. g. are distinguished from Waretrema Srivastava, 1937, species of which have a simple oral sucker with six radially arranged anterior muscular lobes, in that their oral sucker is V-shaped with six embedded muscular finger-like structures in the anteroventral portion. The relatively small C. darwinensis n. sp., collected from Selenotoca multifasciata (Richardson) at Darwin, Northern Territory, Australia, is distinguished from C. costata n. sp., collected from Scatophagus argus (Linnaeus) in the same locality and S. multifasciata off Brisbane, Australia, and by having smaller eggs, a vitellarium commencing at a level close to the ventral sucker rather than at greater than one ovarian length posterior to the ventral sucker, and shorter tegumental body spines. Sequence data of a c.2,500 bp region of the 3' end of 18S, the entire ITS region and the 5' end of the 28S revealed that Spiritestis and Capitimitta are not as closely related as some morphological features would suggest and are probably not the closest relative of each other. What has been reported as Waretrema piscicolum Srivastava, 1937 probably consists of several species, some in different genera, and one, based on material collected by Dr Masaaki Machida, is proposed as Spiritestis machidai n. sp. from Crenimugil crenilabis (Forsskål) off Japan. Phylogenetic hypotheses, based on analysis of an alignment of partial 28S sequences with other haploporids, provide a framework for the evaluation of interrelationships within the Haploporidae. These analyses show that: (1) Spiritestis and Capitimitta are supported within the Haploporidae; (2) branches to Forticulcita Overstreet, 1982, Saccocoelioides Szidat, 1954, Spiritestis and Capitimitta create a clade that is sister to haploporines from the Mediterranean Sea; (3) the branch to Saccocoelioides, Spiritestis and Capitimitta create a polytomy; and (4) the two new species of Capitimitta, plus an immature specimen of an unnamed species, form a monophyletic clade.


Assuntos
Filogenia , Trematódeos/classificação , Trematódeos/ultraestrutura , Animais , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 28S/genética , Especificidade da Espécie , Trematódeos/genética
12.
Syst Parasitol ; 86(2): 197-208, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24048751

RESUMO

Digeneans in the genus Hirudinella de Blainville, 1828 (Hirudinellidae) from three species of pelagic fishes, Acanthocybium solandri (Cuvier), Makaira nigricans Lacépède and Thunnus albacares (Bonnaterre), and one benthic fish, Mulloidichthys martinicus (Cuvier), from the Gulf of Mexico are investigated using comparison of ribosomal DNA. Four species are identified based on molecular differences: Hirudinella ventricosa (Pallas, 1774) Baird, 1853 from A. solandri, Hirudinella ahi Yamaguti, 1970 from T. albacares, and two unidentified but distinct species of Hirudinella, herein referred to as Hirudinella sp. A (from both M. nigricans and M. martinicus) and Hirudinella sp. B from M. nigricans. Additionally, H. ahi, based tentatively on morphological identification, is reported from Thunnus thynnus (Linnaeus). This represents the first record of a hirudinellid from M. martinicus and the first record of H. ahi from T. thynnus. A phylogeny of some Hemiurata Skrjabin & Guschanskaja, 1954 using partial fragments of the 28S rDNA sequences is consistent with earlier phylogenies and the position of the Hirudinellidae Dollfus, 1932 is well-supported as a derived group most closely related to the Syncoeliidae Looss, 1899.


Assuntos
DNA Ribossômico/genética , Filogenia , Trematódeos/classificação , Trematódeos/genética , Animais , Peixes/parasitologia , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Trematódeos/anatomia & histologia
13.
Acta Parasitol ; 68(1): 159-171, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36456776

RESUMO

PURPOSE: The Diplostomidae is a globally distributed family of digeneans that parasitize a wide variety of tetrapod definitive hosts. Recent molecular phylogenetic studies have revealed unknown diplostomid diversity in avian hosts throughout the New World. Herein, we provide descriptions of a novel genus of diplostomids with two new species. METHODS: Two species of diplostomids belonging to the new genus were collected from anhinga birds in Mississippi (USA) and Brazil. Partial nuclear 28S ribosomal and mitochondrial cox1 genes were sequenced. Ribosomal data were used for phylogenetic inference. RESULTS: Both species of Anhingatrema n. gen. were positioned in a 100% supported, monophyletic clade in the phylogenetic tree. The molecular phylogenetic position and a combination of morphological features (e.g., presence of pseudosuckers, testes shape and orientation) supported erection of the new genus. Anhingatrema overstreeti n. sp. and Anhingatrema cararai n. sp. are morphologically similar, but differ in size of and ratios associated with pseudosuckers. The two species differ by 2% of 28S sequences and 13.8% of cox1 sequences. Comparison of DNA sequences revealed that Diplostomidae gen. sp. in GenBank (MZ314151) is conspecific with An. overstreeti n. sp. CONCLUSION: Anhingatrema n. gen. is the sixth genus of diplostomids known from anhingas worldwide. Anhingatrema cararai n. sp. is the first diplostomid to be reported from anhingas in South America. Combined with previous studies, the molecular phylogenies revealed at least two host switches to anhingas from other birds during the evolutionary history of the Diplostomidae.


Assuntos
Trematódeos , Animais , Filogenia , Genes Mitocondriais , Aves , Brasil
14.
Zool J Linn Soc ; 196(1): 124-136, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36051981

RESUMO

Alaria, Didelphodiplostomum and Pharyngostomoides are among genera of diplostomid digeneans known to parasitize mammalian definitive hosts. Despite numerous recent molecular phylogenetic studies of diplostomids, limited DNA sequence data is available from diplostomids parasitic in mammals. Herein, we provide the first 28S rDNA and cox1 mtDNA sequences from morphologically identified, adult specimens of Didelphodiplostomum and Pharyngostomoides. Newly generated 28S sequences were used to infer the phylogenetic interrelationships of these two genera among other major lineages of diplostomoideans. The phylogeny based on 28S and a review of morphology clearly suggests that Pharyngostomoides should be considered a junior synonym of Alaria, while Didelphodiplostomum should be considered a junior synonym of Tylodelphys. Pharyngostomoides procyonis (type species), Pharyngostomoides adenocephala and Pharyngostomoides dasyuri were transferred into Alaria as Alaria procyonis comb. nov., Alaria adenocephala comb. nov. and Alaria dasyuri comb. nov.; Didelphodiplostomum variabile (type species) and Didelphodiplostomum nunezae were transferred into Tylodelphys as Tylodelphys variabilis comb. nov. and Tylodelphys nunezae comb. nov. In addition, Alaria ovalis comb. nov. (formerly included in Pharyngostomoides) was restored and transferred into Alaria based on a morphological study of well-fixed, adult specimens and the comparison of cox1 DNA sequences among Alaria spp. The diplostomid genus Parallelorchis was restored based on review of morphology.

15.
Int J Parasitol ; 52(1): 47-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34371018

RESUMO

The Diplostomidae Poirier, 1886 is a large, globally distributed family of digeneans parasitic in intestines of their definitive hosts. Diplostomum and Tylodelphys spp. are broadly distributed, commonly reported, and the most often sequenced diplostomid genera. The majority of published DNA sequences from these genera originated from larval stages only, which typically cannot be identified to the species level based on morphology alone. We generated partial large ribosomal subunit (28S) rRNA and cytochrome c oxidase subunit 1 (cox1) mtDNA gene sequences from 14 species/species-level lineages of Diplostomum, six species/species-level lineages of Tylodelphys, two species/species-level lineages of Austrodiplostomum, one species previously assigned to Paralaria, two species/species-level lineages of Dolichorchis and one unknown diplostomid. Our DNA sequences of 11 species/species-level lineages of Diplostomum (all identified to species), four species/species-level lineages of Tylodelphys (all identified to species), Austrodiplostomum compactum, Paralaria alarioides and Dolichorchis lacombeensis originated from adult specimens. 28S sequences were used for phylogenetic inference to demonstrate the position of Paralaria alarioides and Dolichorchis spp. within the Diplostomoidea and study the interrelationships of Diplostomum, Tylodelphys and Austrodiplostomum. Our results demonstrate that two diplostomids from the North American river otter (P. alarioides and a likely undescribed taxon) belong within Diplostomum. Further, our results demonstrate the non-monophyly of Tylodelphys due to the position of Austrodiplostomum spp., based on our phylogenetic analyses and morphology. Furthermore, the results of phylogenetic analysis of 28S confirmed the status of Dolichorchis as a separate genus. The phylogenies suggest multiple definitive host-switching events (birds to otters and among major avian groups) and a New World origin of Diplostomum and Tylodelphys spp. Our DNA sequences from adult digeneans revealed identities of 10 previously published lineages of Diplostomum and Tylodelphys, which were previously identified to genus only. The novel DNA data from this work provide opportunities for future comparisons of larval diplostomines collected in ecological studies.


Assuntos
Trematódeos , Animais , Aves , DNA Mitocondrial/genética , Larva , Filogenia , Especificidade da Espécie
16.
Artigo em Inglês | MEDLINE | ID: mdl-35284861

RESUMO

Crassiphialinae Sudarikov, 1960 is a large subfamily of the Diplostomidae Poirier, 1886 with a complex taxonomic history. It includes a diversity of species parasitic in the intestines of avian and mammalian definitive hosts worldwide. Posthodiplostomum Dubois, 1936 is a large and broadly distributed crassiphialine genus notorious for its association with diseases in their fish second intermediate hosts. In this study, we generated partial 28S rDNA and cytochrome c oxidase subunit 1 (cox1) mtDNA gene sequences of digeneans belonging to seven crassiphialine genera. The 28S sequences were used to study the interrelationships among crassiphialines and their placement among other major diplostomoidean lineages. Our molecular phylogenetic analysis and review of morphology does not support subfamilies currently recognized in the Diplostomidae; therefore, we abandon the current subfamily system of the Diplostomidae. Molecular phylogenetic analyses suggest the synonymy of Posthodiplostomum, Ornithodiplostomum Dubois, 1936 and Mesoophorodiplostomum Dubois, 1936; morphological study of our well-fixed adult specimens and review of literature revealed lack of consistent differences among the three genera. Thus, we synonymize Ornithodiplostomum and Mesoophorodiplostomum with Posthodiplostomum. Our phylogenetic analyses suggest an Old World origin of Posthodiplostomum followed by multiple dispersal events among biogeographic realms. Furthermore, our analyses indicate that the ancestors of these digeneans likely parasitized ardeid definitive hosts. Four new species of Posthodiplostomum collected from birds in the New World as well as one new species of Posthodiplostomoides Williams, 1969 from Uganda are described.

17.
Acta Parasitol ; 65(2): 525-534, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31919798

RESUMO

PURPOSE: Cardiocephaloides is a small genus of strigeid digeneans with an essentially cosmopolitan distribution. Most members of Cardiocephaloides are found in larid birds, however, Cardiocephaloides physalis is an exception and parasitizes penguins in some coastal regions of South America and South Africa. No prior molecular phylogenetic studies have included DNA sequence data of C. physalis. Herein, we provide molecular phylogenetic analyses of Cardiocephaloides using DNA sequences from five species of these strigeids. METHODS: Adult Cardiocephaloides spp. were obtained from larid birds and penguins collected from 3 biogeographical realms (Palearctic, Nearctic and Neotropics). We have generated sequences of the complete ITS region and partial 28S gene of the nuclear ribosomal DNA, along with partial sequences of the mitochondrial CO1 gene for C. physalis, C. medioconiger and the type species of the genus, C. longicollis and used them for phylogenetic inference. RESULTS: Cardiocephaloides spp. appeared as a 100% supported clade in the phylogenetic tree based on 28S sequences. The position of C. physalis varied between the phylogenetic trees based on the relatively conservative 28S gene on one hand, and variable ITS1 and COI sequences on the other. Cardiocephaloides physalis was nested within the clade of Cardiocephaloides spp. in the 28S tree and appeared as the sister group to the remaining members of the genus in the ITS1 region and COI trees. We detected 0.4-1.6% interspecific divergence in 28S, 1.9-6.9% in the ITS region and 8.7-11.8% in CO1 sequences of Cardiocephaloides spp. Our 28S sequence of C. physalis from South America and a shorter sequence from Africa available in the GenBank were identical. CONCLUSION: Cardiocephaloides as represented in the currently available dataset is monophyletic with C. physalis parasitism in penguins likely resulting from a secondary host-switching event. Identical 28S sequences of C. physalis from South America and Africa cautiously confirm the broad distribution of this species, although comparison of faster mutating genes (e. g., CO1) is recommended for a better substantiated conclusion.


Assuntos
Doenças das Aves/parasitologia , Spheniscidae/parasitologia , Trematódeos/classificação , Infecções por Trematódeos/veterinária , Animais , Sequência de Bases , Teorema de Bayes , Charadriiformes/parasitologia , Chile , DNA de Helmintos/química , DNA Mitocondrial/química , DNA Ribossômico/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Cadeias de Markov , Método de Monte Carlo , Filogenia , RNA Ribossômico 28S/genética , Alinhamento de Sequência , Spheniscidae/classificação , Trematódeos/genética , Infecções por Trematódeos/parasitologia
18.
Parasitol Int ; 70: 118-122, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30738952

RESUMO

The systematic position of Urotrema Braun, 1900 and the family Urotrematidae Poche, 1926 have always been controversial. Due to its unusual morphological characteristics, lack of knowledge of the life cycle or details of its excretory system, this family was placed within different higher taxonomic groups of digeneans. Despite being one of the most enigmatic digenean families in terms of its phylogenetic affinities, DNA sequence data for Urotrematidae were lacking. Here, we evaluate the phylogenetic relationships of Urotrema using newly obtained partial sequences of the 28S rRNA gene from Urotrema specimens collected in North, Central and South America including the type species U. scabridum Braun, 1900, as well as previously published sequences of digeneans. Our study has demonstrated that Urotrema is phylogenetically closest (100% branch support) to members of Parabascus Looss, 1907 belonging to the family Pleurogenidae Looss, 1899. Thus, the family Urotrematidae becomes a junior synonym of the Pleurogenidae. Urotrema forms a 100% supported clade among the Pleurogenidae, parasitic in warm-blooded vertebrates. However, the phylogenetic relationships and exact systematic position of the remaining 3 genera currently placed in the Urotrematidae remains unclear and requires additional studies as their allocation is mostly based on the terminal posterior position of the genital pore and cirrus-sac. According to our results the genus Parabascus appears to be paraphyletic and requires further detailed phylogenetic and morphological analyses.


Assuntos
Filogenia , Trematódeos/classificação , Animais , DNA de Helmintos/genética , DNA Ribossômico/genética , Microscopia , RNA Ribossômico 28S/genética , América do Sul , Trematódeos/anatomia & histologia
19.
Zool Scr ; 48(4): 545-556, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31937984

RESUMO

The Cyathocotylidae is a globally distributed family of digeneans parasitic as adults in fish, reptiles, birds, and mammals in both freshwater and marine environments. Molecular phylogenetic analysis of interrelationships among cyathocotylids is lacking with only a few species included in previous studies. We used sequences of the nuclear 28S rRNA gene to examine phylogenetic affinities of 11 newly sequenced taxa of cyathocotylids and the closely related family Brauninidae collected from fish, reptiles, birds, and dolphins from Australia, Southeast Asia, Europe, North America and South America. This is the first study to provide sequence data from adult cyathocotylids parasitic in fish and reptiles. Our analyses demonstrated that the members of the genus Braunina (family Brauninidae) belong to the Cyathocotylidae, placing the Brauninidae into synonymy with the Cyathocotylidae. In addition, our DNA sequences supported the presence of a second species in the currently monotypic Braunina. Our phylogeny revealed that Cyathocotyle spp. from crocodilians belong to a separate genus (Suchocyathocotyle, previously proposed as a subgenus) and subfamily (Suchocyathocotylinae subfam. n.). Morphological study of Gogatea serpentum indicum supported its elevation to species as Gogatea mehri. The phylogeny did not support Holostephanoides within the subfamily Cyathocotylinae; instead, Holostephanoides formed a strongly supported clade with members of the subfamily Szidatiinae (Gogatea and Neogogatea). Therefore, we transfer Holostephanoides into the Szidatiinae. DNA sequence data revealed the potential presence of cryptic species reported under the name Mesostephanus microbursa. Our phylogeny indicated at least two major host switching events in the evolutionary history of the subfamily Szidatiinae which likely resulted in the transition of these parasites from birds to fish and snakes. Likewise, the transition to dolphins by Braunina represents another major host switching event among the Cyathocotylidae. In addition, our phylogeny revealed more than a single transition between freshwater and marine environments demonstrated in our dataset by Braunina and some Mesostephanus.

20.
J Parasitol ; 104(3): 221-239, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29543571

RESUMO

Two cryptic species of haploporid digeneans belonging in Saccocoelioides are described from Costa Rica: one from a poeciliid fish, Poecilia gillii, and the other from a characid fish, Astyanax aeneus. Traditional morphological features are examined and found to be largely inefficient for differentiating among the new species and 20 New World congeners. Comparison of ribosomal DNA sequences among the 2 new species, 2 North American, 4 Middle American, and 3 South American species of Saccocoelioides, including the type-species Saccocoelioides nanii from Argentina and Saccocoelioides sogandaresi from Texas, is effective in differentiating among these species. A Bayesian inference analysis is conducted using a concatenated alignment of the same 2 ribosomal gene regions from 35 species belonging in the Haploporoidea and rooted by the atractotrematid Isorchis anomalus. The analysis provides stronger support for a close relationship between species in Saccocoelioides and Intromugil; thus, Intromugil is transferred from the Waretrematinae to the Chalcinotrematinae. Additionally, interrelationships among 11 species of Saccocoelioides are resolved and reveal a distinct genetic rift suggesting the presence of 2 distinct lineages within the genus, 1 containing the type-species and the other containing a group of species that more closely resemble other genera in the subfamily. Taxonomy of Saccocoelioides is discussed, and observations made during the present study justify taking several taxonomic actions: new combinations are proposed for Saccocoelioides tilapiae n. comb., formerly in the now-defunct Culuwiya, and Saccocoelioides ruedasueltensis n. comb., formerly in Chalcinotrema; Saccocoelioides guaporense nomen novem is proposed for Lecithobotrioides elongatus; Saccocoelioides papernai is considered a junior subjective synonym of Saccocoelioides overstreeti; Saccocoelioides godoyi is considered a junior subjective synonym of Saccocoelioides szidati; Saccocoelioides magnorchis and Saccocoelioides saccodontis are considered species inquirendae; and Saccocoelioides adelae is considered a nomen nudum. Four new hosts are reported for Saccocoelioides cichlidorum: Amphilophus lyonsi, Amatitlania nigrofasciatus, Amatitlania septemfasciatus, and Hypsophrys nicaraguensis. Molecular data call into question some existing species identifications in Saccocoelioides and reveal that molecular tools combined with traditional taxonomy are required for accurately identifying species in the genus. Twenty-two species of Saccocoelioides are formally accepted, but it is noted that as new molecular data become available, some of these species may be transferred to other genera in the subfamily.


Assuntos
Characidae/parasitologia , Doenças dos Peixes/parasitologia , Filogenia , Poecilia/parasitologia , Trematódeos/classificação , Infecções por Trematódeos/veterinária , Animais , Argentina , Teorema de Bayes , Costa Rica , DNA de Helmintos/química , DNA Ribossômico/química , DNA Espaçador Ribossômico/química , Trato Gastrointestinal/parasitologia , RNA Ribossômico 28S/genética , Rios , Alinhamento de Sequência/veterinária , Texas , Trematódeos/anatomia & histologia , Trematódeos/genética , Infecções por Trematódeos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA