Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells Dev ; 23(24): 3049-64, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25144240

RESUMO

Extracellular stresses influence transcription factor (TF) expression and therefore lineage identity in the peri-implantation mouse embryo and its stem cells. This potentially affects pregnancy outcome. To understand the effects of stress signaling during this critical period of pregnancy, we exposed cultured murine embryonic stem cells (mESCs) to hyperosmotic stress. We then measured stress-enzyme-dependent regulation of key pluripotency and lineage TFs. Hyperosmotic stress slowed mESC accumulation due to slowing of the cell cycle over 72 h, after a small apoptotic response within 12 h. Phosphoinositide 3-kinase (PI3K) enzymatic signaling was responsible for stem cell survival under stressed conditions. Stress initially triggered mESC differentiation after 4 h through MEK1, c-Jun N-terminal kinase (JNK), and PI3K enzymatic signaling, which led to proteasomal degradation of Oct4, Nanog, Sox2, and Rex1 TF proteins. Concurrent with this post-transcriptional effect was the decreased accumulation of potency TF mRNA transcripts. After 12-24 h of stress, cells adapted, cell cycle resumed, and Oct4 and Nanog mRNA and protein expression returned to approximately normal levels. The TF protein recovery was mediated by p38MAPK and PI3K signaling, as well as by MEK2 and/or MEK1. However, due to JNK signaling, Rex1 expression did not recover. Probing for downstream lineages revealed that although mESCs did not differentiate morphologically during 24 h of stress, they were primed to differentiate by upregulating markers of the first lineage differentiating from mESCs, extraembryonic endoderm. Thus, although two to three TFs that mark pluripotency recover expression by 24 h of stress, there is nonetheless sustained Rex1 suppression and a priming of mESCs for differentiation to the earliest lineage.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Sistema de Sinalização das MAP Quinases , Pressão Osmótica , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
2.
Stem Cells Dev ; 22(10): 1564-75, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23316940

RESUMO

The AMP-activated protein kinase (AMPK) mediates rapid, stress-induced loss of the inhibitor of differentiation (Id)2 in blastocysts and trophoblast stem cells (TSC), and a lasting differentiation in TSC. However, it is not known if AMPK regulates other potency factors or regulates them before the blastocyst stage. The caudal-related homeodomain protein (Cdx)2 is a regulatory gene for determining TSC, the earliest placental lineage in the preimplantation mouse embryo, but is expressed in the oocyte and in early cleavage stage embryos before TSC arise. We assayed the expression of putative potency-maintaining phosphorylated Cdx2 ser60 in the oocyte, two-cell stage embryo, blastocyst, and in TSC. We studied the loss of Cdx2 phospho ser60 expression induced by hyperosmolar stress and its underlying mechanisms. Hyperosmolar stress caused rapid loss of nuclear Cdx2 phospho ser60 and Id2 in the two-cell stage embryo by 0.5 h. Stress-induced Cdx2 phospho ser60 and Id2 loss is reversed by the AMPK inhibitor compound C and is induced by the AMPK agonist 5-amino-1-ß-d-ribofuranosyl-imidazole-4-carboxamide in the absence of stress. In the two-cell stage embryo and TSC hyperosmolar, stress caused AMPK-mediated loss of Cdx2 phospho ser60 as detected by immunofluorescence and immunoblot. We propose that AMPK may be the master regulatory enzyme for mediating stress-induced loss of potency as AMPK is also required for stress-induced loss of Id2 in blastocysts and TSC. Since AMPK mediates potency loss in embryos and stem cells it will be important to measure, test mechanisms for, and manage the AMPK function to optimize the stem cell and embryo quality in vitro and in vivo.


Assuntos
Monofosfato de Adenosina/farmacologia , Embrião de Mamíferos/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteína 2 Inibidora de Diferenciação/metabolismo , Células-Tronco/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Fator de Transcrição CDX2 , Linhagem Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/enzimologia , Feminino , Humanos , Camundongos , Modelos Biológicos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Pressão Osmótica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA