Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892420

RESUMO

Genome-wide association studies (GWAS) significantly enhance our ability to identify trait-associated genomic variants by considering the host genome. Moreover, the hologenome refers to the host organism's collective genetic material and its associated microbiome. In this study, we utilized the hologenome framework, called Hologenome-wide association studies (HWAS), to dissect the architecture of complex traits, including milk yield, methane emissions, rumen physiology in cattle, and gut microbial composition in pigs. We employed four statistical models: (1) GWAS, (2) Microbial GWAS (M-GWAS), (3) HWAS-CG (hologenome interaction estimated using COvariance between Random Effects Genome-based restricted maximum likelihood (CORE-GREML)), and (4) HWAS-H (hologenome interaction estimated using the Hadamard product method). We applied Bonferroni correction to interpret the significant associations in the complex traits. The GWAS and M-GWAS detected one and sixteen significant SNPs for milk yield traits, respectively, whereas the HWAS-CG and HWAS-H each identified eight SNPs. Moreover, HWAS-CG revealed four, and the remaining models identified three SNPs each for methane emissions traits. The GWAS and HWAS-CG detected one and three SNPs for rumen physiology traits, respectively. For the pigs' gut microbial composition traits, the GWAS, M-GWAS, HWAS-CG, and HWAS-H identified 14, 16, 13, and 12 SNPs, respectively. We further explored these associations through SNP annotation and by analyzing biological processes and functional pathways. Additionally, we integrated our GWA results with expression quantitative trait locus (eQTL) data using transcriptome-wide association studies (TWAS) and summary-based Mendelian randomization (SMR) methods for a more comprehensive understanding of SNP-trait associations. Our study revealed hologenomic variability in agriculturally important traits, enhancing our understanding of host-microbiome interactions.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Bovinos/genética , Suínos/genética , Microbioma Gastrointestinal/genética , Rúmen/microbiologia , Rúmen/metabolismo , Fenótipo , Metano/metabolismo , Leite/metabolismo , Genoma
2.
BMC Bioinformatics ; 24(1): 153, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072709

RESUMO

BACKGROUND: Construction of kinship matrices among individuals is an important step for both association studies and prediction studies based on different levels of omic data. Methods for constructing kinship matrices are becoming diverse and different methods have their specific appropriate scenes. However, software that can comprehensively calculate kinship matrices for a variety of scenarios is still in an urgent demand. RESULTS: In this study, we developed an efficient and user-friendly python module, PyAGH, that can accomplish (1) conventional additive kinship matrces construction based on pedigree, genotypes, abundance data from transcriptome or microbiome; (2) genomic kinship matrices construction in combined population; (3) dominant and epistatic effects kinship matrices construction; (4) pedigree selection, tracing, detection and visualization; (5) visualization of cluster, heatmap and PCA analysis based on kinship matrices. The output from PyAGH can be easily integrated in other mainstream software based on users' purposes. Compared with other softwares, PyAGH integrates multiple methods for calculating the kinship matrix and has advantages in terms of speed and data size compared to other software. PyAGH is developed in python and C + + and can be easily installed by pip tool. Installation instructions and a manual document can be freely available from https://github.com/zhaow-01/PyAGH . CONCLUSION: PyAGH is a fast and user-friendly Python package for calculating kinship matrices using pedigree, genotype, microbiome and transcriptome data as well as processing, analyzing and visualizing data and results. This package makes it easier to perform predictions and association studies processes based on different levels of omic data.


Assuntos
Genômica , Software , Humanos , Genômica/métodos , Genótipo , Linhagem
3.
BMC Genomics ; 22(1): 151, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653278

RESUMO

BACKGROUND: China is the country with the most abundant swine genetic resources in the world. Through thousands of years of domestication and natural selection, most of pigs in China have developed unique genetic characteristics. Finding the unique genetic characteristics and modules of each breed is an essential part of their precise conservation. RESULTS: In this study, we used the partial least squares method to identify the significant specific SNPs of 19 local Chinese pig breeds and 5 Western pig breeds. A total of 37,514 significant specific SNPs (p < 0.01) were obtained from these breeds, and the Chinese local pig breed with the most significant SNPs was Hongdenglong (HD), followed by Jiaxing black (JX), Huaibei (HB), Bihu (BH), small Meishan (SMS), Shengxian Hua (SH), Jiangquhai (JQ), Mi (MI), Chunan (CA), Chalu (CL), Jinhualiangtouwu (JHL), Fengjing (FJ), middle Meishan (MMS), Shanzhu (SZ), Pudong white (PD), Dongchuan (DC), Erhualian (EH), Shawutou (SW) and Lanxi Hua (LX) pig. Furthermore, we identified the breeds with the most significant genes, GO terms, pathways, and networks using KOBAS and IPA and then ranked them separately. The results showed that the breeds with the highest number of interaction networks were Hongdenglong (12) and Huaibei (12) pigs. In contrast, the breeds with the lowest interaction networks were Shawutou (4) and Lanxi Hua pigs (3), indicating that Hongdenglong and Huaibei pigs might have the most significant genetic modules in their genome, whereas Shawutou and Lanxi Hua pigs may have the least unique characteristics. To some degree, the identified specific pathways and networks are related to the number of genes and SNPs linked to the specific breeds, but they do not appear to be the same. Most importantly, more significant modules were found to be related to the development and function of the digestive system, regulation of diseases, and metabolism of amino acids in the local Chinese pig breeds, whereas more significant modules were found to be related to the growth rate in the Western pig breeds. CONCLUSION: Our results show that each breed has some relatively unique structural modules and functional characteristics. These modules allow us to better understand the genetic differences among local Chinese and Western pig breeds and therefore implement precise conservation methods. This study could provide a basis for formulating more effective strategies for managing and protecting these genetic resources in the future.


Assuntos
Genoma , Seleção Genética , Animais , China , Variação Genética , Polimorfismo de Nucleotídeo Único , Suínos/genética
4.
Cancer Cell Int ; 21(1): 388, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289845

RESUMO

Cancers are complex diseases orchestrated by a plethora of extrinsic and intrinsic factors. Research spanning over several decades has provided better understanding of complex molecular interactions responsible for the multifaceted nature of cancer. Recent advances in the field of next generation sequencing and functional genomics have brought us closer towards unravelling the complexities of tumor microenvironment (tumor heterogeneity) and deregulated signaling cascades responsible for proliferation and survival of tumor cells. Phytochemicals have begun to emerge as potent beneficial substances aimed to target deregulated signaling pathways. Isoflavonoid genistein is an essential phytochemical involved in regulation of key biological processes including those in different types of cancer. Emerging preclinical evidence have shown its anti-cancer, anti-inflammatory and anti-oxidant properties. Testing of this substance is in various phases of clinical trials. Comprehensive preclinical and clinical trials data is providing insight on genistein as a modulator of various signaling pathways both at transcription and translation levels. In this review we have explained the mechanistic regulation of several key cellular pathways by genistein. We have also addressed in detail various microRNAs regulated by genistein in different types of cancer. Moreover, application of nano-formulations to increase the efficiency of genistein is also discussed. Understanding the pleiotropic potential of genistein to regulate key cellular pathways and development of efficient drug delivery system will bring us a step towards designing better chemotherapeutics.

5.
Heredity (Edinb) ; 127(6): 546-553, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34750534

RESUMO

There are rich and vast genetic resources of indigenous pig breeds in the world. Currently, great attention is paid to either crossbreeding or conservation of these indigenous pig breeds, and insufficient attention is paid to the combination of conservation and breeding along with their long-term effects on genetic diversity. Therefore, the objective of this study is to compare the long-term effects of using conventional conservation and optimal contribution selection methods on genetic diversity and genetic gain. A total of 11 different methods including conventional conservation and optimal contribution selection methods were investigated using stochastic simulations. The long-term effects of using these methods were evaluated in terms of genetic diversity metrices such as expected heterozygosity (He) and the rate of genetic gain. The results indicated that the rates of true inbreeding in these conventional conservation methods were maintained at around 0.01. The optimal contribution selection methods based either on the pedigree (POCS) or genome (GOCS) information showed more genetic gain than conventional methods, and POCS achieved the largest genetic gain. Furthermore, the effect of using GOCS methods on most of the genetic diversity metrics was slightly better than the conventional conservation methods when the rate of true inbreeding was the same, but this also required more sires used in OCS methods. According to the rate of true inbreeding, there was no significant difference among these conventional methods. In conclusion, there is no significant difference in different ways of selecting sows on inbreeding when we use different conventional conservation methods. Compared with conventional methods, POCS method could achieve the most genetic gain. However, GOCS methods can not only achieve higher genetic gain, but also maintain a relatively high level of genetic diversity. Therefore, GOCS is a better choice if we want to combine conservation and breeding in actual production in the conservation farms.


Assuntos
Genoma , Endogamia , Animais , Feminino , Variação Genética , Heterozigoto , Linhagem , Suínos
7.
Sci Data ; 10(1): 280, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179393

RESUMO

Excessive fat deposition can trigger metabolic diseases, and it is crucial to identify factors that can break the link between fat deposition and metabolic diseases. Healthy obese Laiwu pigs (LW) are high in fat content but resistant to metabolic diseases. In this study, we compared the fecal microbiome, fecal and blood metabolome, and genome of LW and Lulai pigs (LU) to identify factors that can block the link between fat deposition and metabolic diseases. Our results show significant differences in Spirochetes and Treponema, which are involved in carbohydrate metabolism, between LW and LU. The fecal and blood metabolome composition was similar, and some anti-metabolic disease components of blood metabolites were different between the two breeds of pigs. The predicted differential RNA is mainly enriched in lipid metabolism and glucose metabolism, which is consistent with the functions of differential microbiota and metabolites. The down-regulated gene RGP1 is strongly negatively correlated with Treponema. Our omics data would provide valuable resources for further scientific research on healthy obesity in both human and porcine.


Assuntos
Metaboloma , Microbiota , Suínos , Animais , Genoma , Metabolismo dos Lipídeos , Obesidade
8.
Genes (Basel) ; 14(4)2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37107565

RESUMO

Genomic selection (GS) techniques have improved animal breeding by enhancing the prediction accuracy of breeding values, particularly for traits that are difficult to measure and have low heritability, as well as reducing generation intervals. However, the requirement to establish genetic reference populations can limit the application of GS in pig breeds with small populations, especially when small populations make up most of the pig breeds worldwide. We aimed to propose a kinship index based selection (KIS) method, which defines an ideal individual with information on the beneficial genotypes for the target trait. Herein, the metric for assessing selection decisions is a beneficial genotypic similarity between the candidate and the ideal individual; thus, the KIS method can overcome the need for establishing genetic reference groups and continuous phenotype determination. We also performed a robustness test to make the method more aligned with reality. Simulation results revealed that compared to conventional genomic selection methods, the KIS method is feasible, particularly, when the population size is relatively small.


Assuntos
Gado , Herança Multifatorial , Animais , Suínos , Gado/genética , Seleção Genética , Genoma , Genótipo
9.
Genes (Basel) ; 13(9)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36140748

RESUMO

Statistical models play a significant role in designing competent breeding programs related to complex traits. Recently; the holo-omics framework has been productively utilized in trait prediction; but it contains many complexities. Therefore; it is desirable to establish prediction accuracy while combining the host's genome and microbiome data. Several methods can be used to combine the two data in the model and study their effectiveness by estimating the prediction accuracy. We validate our holo-omics interaction models with analysis from two publicly available datasets and compare them with genomic and microbiome prediction models. We illustrate that the holo-omics interactive models achieved the highest prediction accuracy in ten out of eleven traits. In particular; the holo-omics interaction matrix estimated using the Hadamard product displayed the highest accuracy in nine out of eleven traits, with the direct holo-omics model and microbiome model showing the highest prediction accuracy in the remaining two traits. We conclude that comparing prediction accuracy in different traits using real data showed important intuitions into the holo-omics architecture of complex traits.


Assuntos
Modelos Genéticos , Herança Multifatorial , Genoma , Genômica/métodos , Fenótipo
10.
Front Mol Biosci ; 7: 624494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521059

RESUMO

Cancer is a multifactorial disease characterized by complex molecular landscape and altered cell pathways that results in an abnormal cell growth. Natural compounds are target-specific and pose a limited cytotoxicity; therefore, can aid in the development of new therapeutic interventions for the treatment of this versatile disease. Berberine is a member of the protoberberine alkaloids family, mainly present in the root, stem, and bark of various trees, and has a reputed anticancer activity. Nonetheless, the limited bioavailability and low absorption rate are the two major hindrances following berberine administration as only 0.5% of ingested berberine absorbed in small intestine while this percentage is further decreased to 0.35%, when enter in systemic circulation. Nano-based formulation is believed to be an ideal candidate to increase absorption percentage as at nano scale level, compounds can absorb rapidly in gut. Nanotechnology-based therapeutic approaches have been implemented to overcome such problems, ultimately promoting a higher efficacy in the treatment of a plethora of diseases. This review present and critically discusses the anti-proliferative role of berberine and the nanotechnology-based therapeutic strategies used for the nano-scale delivery of berberine. Finally, the current approaches and promising perspectives of latest delivery of this alkaloid are also critically analyzed and discussed.

11.
Front Genet ; 11: 733, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849777

RESUMO

Genetic characterization of Chinese indigenous pig breeds is essential to promote scientific conservation and sustainable development of pigs. Here, we systematically surveyed the genomes of 75 unrelated Diannan small-ear (DSE) pigs from three diverse regions (Yingjiang County, Jinping County, and Sipsongpanna in Yunnan Province) to describe their population structures, genetic diversity, inbreeding coefficients, and selection signatures. First, these individuals were sequenced and genotyped using the genome reducing and sequencing (GGRS) protocol. A total of 438,038 autosomal single-nucleotide polymorphisms (SNPs) were obtained and used for subsequent statistical analysis. The results showed that these DSE pigs were clearly differentiated into three separate clades revealed by the population structure and principal component analysis, which is consistent with their geographical origins. Diannan small-ear pigs owned lower genetic diversity when compared with some other pig breeds, which demonstrated the need to strengthen the conservation strategies for DSE pigs. In addition, the inbreeding coefficients based on runs of homozygosity (ROH) length (F ROH) were calculated in each ROH length categories, respectively. And the results indicated that the ancient (up to 50 generations ago) inbreeding had greater impacts than recent (within the last five generations) inbreeding within DSE pigs. Some candidate selection signatures within the DSE pig population were detected through the ROH islands and integrated haplotype homozygosity score (iHS) methods. And genes associated with meat quality (COL15A1, RPL3L, and SLC9A3R2), body size (PALM2-AKAP2, NANS, TRAF7, and PACSIN1), adaptability (CLDN9 and E4F1), and appetite (GRM4) were identified. These findings can help to understand the genetic characteristics and provide insights into the molecular background of special phenotypes of DSE pigs to promote conservation and sustainability of the breed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA