RESUMO
Graphene exhibits remarkable optical and electronic properties when interacts with electromagnetic field. These properties play a vital role in a broad range of applications, such as, optical communication, optical storage, biomedical imaging and security purposes. Based on electromagnetically induced grating (EIG), we study lensless holographic imaging via quantized energy levels of two-dimensional (2D) monolayer graphene model. We observe that by exploiting electromagnetically induced grating (EIG), holographic interference patterns via electromagnetically induced classical holographic imaging (EICHI) and, non locally, electromagnetically induced quantum holographic imaging (EIQHI) can be obtained in the infrared range (THz) of the spectrum. We notice that for EIQHI one can obtain image magnification using monolayer graphene via manipulation of certain controllable parameters. The scheme provides an experimentally viable option for the classical and quantum mechanical holographic imaging and possibilities for the design of graphene-based quantum mechanical devices which can have many applications.
RESUMO
The present study was aimed at investigating the effect of ionic and non-ionic emulsifiers at 3 different levels of 0.15, 0.30 and 0.45% per 100 g of flour on the physico-chemical properties, microstructure and water distribution of fish-meat based fried snacks. The results showed that the addition of distilled mono-glycerides (DMG) decreased the strength of the starch-protein network which resulted in increased expansion and decreased water holding capacity (WHC). The addition of diacetyl tartaric acid esters of mono-glycerides (DATEM) increased the WHC and the ordered structure between starch and proteins while oil uptake was decreased. Pasting properties such as breakdown, peak viscosity and pasting temperatures were increased with the addition of DATEM compared to DMG and the control indicating the strong interaction among DATEM, starch and proteins. Scanning electron microscopy (SEM) analysis showed that DATEM strengthened the starch-protein matrix and the dense and rigid microstructure with fewer voids while DMG increased the intercellular spaces between the molecules of starch and proteins. Low field nuclear magnetic resonance (LF-NMR) relaxometry analysis revealed that the amount of free water (T21) was decreased and that of bound water (T23) was increased in DATEM samples indicating the strong interaction between emulsifiers and macromolecules compared to the control and DMG. Moreover, protein in vitro digestibility was also increased with the addition of DATEM. The findings suggested that 0.30% DATEM can be used in snacks with improved physico-chemical and functional properties.
Assuntos
Fenômenos Químicos , Emulsificantes/química , Interações Hidrofóbicas e Hidrofílicas , Alimentos Marinhos , Lanches , Água/química , Animais , Farinha/análise , Manipulação de Alimentos , Amido , Tartaratos , Temperatura , ViscosidadeRESUMO
We study the resonant tunneling of ultraslow atoms through a system of high quality microwave cavities. We find that the phase tunneling time across the two coupled cavities exhibits more frequent resonances as compared to the single cavity interaction. The increased resonances are instrumental in the display of an alternate sub and superclassical character of the tunneling time along the momentum axis with increasing energies of the incident slow atoms. Here, the intercavity separation appears as an additional controlling parameter of the system that provides an efficient control of the superclassical behavior of the phase tunneling time. Further, we find that the phase time characteristics through two cavity system has the combined features of the tunneling through a double barrier and a double well arrangements.
RESUMO
The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.