Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891975

RESUMO

Saline and alkaline stresses limit plant growth and reduce crop yield. Soil salinization and alkalization seriously threaten the sustainable development of agriculture and the virtuous cycle of ecology. Biofertilizers made from plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth and stress tolerance, but also are environmentally friendly and cost-effective. There have been many studies on the mechanisms underlying PGPRs enhancing plant salt resistance. However, there is limited knowledge about the interaction between PGPR and plants under alkaline-sodic stress. To clarify the mechanisms underlying PGPR's improvement of plants' tolerance to alkaline-sodic stress, we screened PGPR from the rhizosphere microorganisms of local plants growing in alkaline-sodic land and selected an efficient strain, Bacillus altitudinis AD13-4, as the research object. Our results indicate that the strain AD13-4 can produce various growth-promoting substances to regulate plant endogenous hormone levels, cell division and differentiation, photosynthesis, antioxidant capacity, etc. Transcriptome analysis revealed that the strain AD13-4 significantly affected metabolism and secondary metabolism, signal transduction, photosynthesis, redox processes, and plant-pathogen interactions. Under alkaline-sodic conditions, inoculation of the strain AD13-4 significantly improved plant biomass and the contents of metabolites (e.g., soluble proteins and sugars) as well as secondary metabolites (e.g., phenols, flavonoids, and terpenoids). The 16S rRNA gene sequencing results indicated that the strain AD13-4 significantly affected the abundance and composition of the rhizospheric microbiota and improved soil activities and physiochemical properties. Our study provides theoretical support for the optimization of saline-alkali-tolerant PGPR and valuable information for elucidating the mechanism of plant alkaline-sodic tolerance.


Assuntos
Bacillus , Medicago sativa , Rizosfera , Microbiologia do Solo , Medicago sativa/microbiologia , Medicago sativa/crescimento & desenvolvimento , Bacillus/genética , Bacillus/fisiologia , Álcalis , Microbiota , Estresse Fisiológico , Tolerância ao Sal , Solo/química
2.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835473

RESUMO

Rice (Oryza sativa) is one of the most important crops grown worldwide, and saline-alkali stress seriously affects the yield and quality of rice. It is imperative to elucidate the molecular mechanisms underlying rice response to saline-alkali stress. In this study, we conducted an integrated analysis of the transcriptome and metabolome to elucidate the effects of long-term saline-alkali stress on rice. High saline-alkali stress (pH > 9.5) induced significant changes in gene expression and metabolites, including 9347 differentially expressed genes (DEGs) and 693 differentially accumulated metabolites (DAMs). Among the DAMs, lipids and amino acids accumulation were greatly enhanced. The pathways of the ABC transporter, amino acid biosynthesis and metabolism, glyoxylate and dicarboxylate metabolism, glutathione metabolism, TCA cycle, and linoleic acid metabolism, etc., were significantly enriched with DEGs and DAMs. These results suggest that the metabolites and pathways play important roles in rice's response to high saline-alkali stress. Our study deepens the understanding of mechanisms response to saline-alkali stress and provides references for molecular design breeding of saline-alkali resistant rice.


Assuntos
Oryza , Transcriptoma , Oryza/genética , Álcalis/farmacologia , Metaboloma/genética , Ciclo do Ácido Cítrico , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298082

RESUMO

Soil saline-alkalization inhibits plant growth and development and seriously affects crop yields. Over their long-term evolution, plants have formed complex stress response systems to maintain species continuity. R2R3-MYB transcription factors are one of the largest transcription factor families in plants, widely involved in plant growth and development, metabolism, and stress response. Quinoa (Chenopodium quinoa Willd.), as a crop with high nutritional value, is tolerant to various biotic and abiotic stress. In this study, we identified 65 R2R3-MYB genes in quinoa, which are divided into 26 subfamilies. In addition, we analyzed the evolutionary relationships, protein physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of CqR2R3-MYB family members. To investigate the roles of CqR2R3-MYB transcription factors in abiotic stress response, we performed transcriptome analysis to figure out the expression file of CqR2R3-MYB genes under saline-alkali stress. The results indicate that the expression of the six CqMYB2R genes was altered significantly in quinoa leaves that had undergone saline-alkali stress. Subcellular localization and transcriptional activation activity analysis revealed that CqMYB2R09, CqMYB2R16, CqMYB2R25, and CqMYB2R62, whose Arabidopsis homologues are involved in salt stress response, are localized in the nucleus and exhibit transcriptional activation activity. Our study provides basic information and effective clues for further functional investigation of CqR2R3-MYB transcription factors in quinoa.


Assuntos
Arabidopsis , Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Sequência de Aminoácidos , Proteínas de Plantas/metabolismo , Genes myb , Arabidopsis/genética , Fatores de Transcrição/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108114

RESUMO

Saline-alkali stress seriously affects the yield and quality of crops, threatening food security and ecological security. Improving saline-alkali land and increasing effective cultivated land are conducive to sustainable agricultural development. Trehalose, a nonreducing disaccharide, is closely related to plant growth and development and stress response. Trehalose 6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) are key enzymes catalyzing trehalose biosynthesis. To elucidate the effects of long-term saline-alkali stress on trehalose synthesis and metabolism, we conducted an integrated transcriptome and metabolome analysis. As a result, 13 TPS and 11 TPP genes were identified in quinoa (Chenopodium quinoa Willd.) and were named CqTPS1-13 and CqTPP1-11 according to the order of their Gene IDs. Through phylogenetic analysis, the CqTPS family is divided into two classes, and the CqTPP family is divided into three classes. Analyses of physicochemical properties, gene structures, conservative domains and motifs in the proteins, and cis-regulatory elements, as well as evolutionary relationships, indicate that the TPS and TPP family characteristics are highly conserved in quinoa. Transcriptome and metabolome analyses of the sucrose and starch metabolism pathway in leaves undergoing saline-alkali stress indicate that CqTPP and Class II CqTPS genes are involved in the stress response. Moreover, the accumulation of some metabolites and the expression of many regulatory genes in the trehalose biosynthesis pathway changed significantly, suggesting the metabolic process is important for the saline-alkali stress response in quinoa.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Trealose/genética , Trealose/metabolismo , Filogenia , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3819-3825, 2020 Aug.
Artigo em Zh | MEDLINE | ID: mdl-32893576

RESUMO

In this study, citrate synthase gene(CIT2), and malate synthase gene(MLS1) were successfully knocked out in ß-amyrin-producing yeast cells by using CRISPR/CAS9. The promoter of phosphoglucose isomerase gene(PGI1) was replaced by that of cytochrome c oxidase subunit Ⅶa(Cox9)to weaken its expression, aiming to channel more carbon flux into the NADPH-producing pathway. The fermentation results showed that CIT2 deletion had no effect on the ß-amyrin production. Compared with the control strain, the production of ß-amyrin was increased by 1.85 times after deleting MLS1, reaching into 3.3 mg·L~(-1). By replacing the promoter of PGI1, the ß-amyrin yield was 3.75 times higher than that of the control strain, reaching up to 6.7 mg·L~(-1). This study successfully knocked out the CITT2 and MLS1 genes and weakened the PGI1 gene by using CRISPR/CAS9, which directly influenced the production of ß-amyrin and provided some reference for the the metabolic engineering of triterpernoid producing strain.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae/genética , Etanol , Fermentação
6.
Zhongguo Zhong Yao Za Zhi ; 44(7): 1341-1349, 2019 Apr.
Artigo em Zh | MEDLINE | ID: mdl-31090290

RESUMO

In this study, the synthetic pathway of ß-amyrin was constructed in the pre-constructed Saccharomyces cerevisiae chassis strain Y0 by introducing ß-amyrin synthase from Glycyrrhiza uralensis, resulting strain Y1-C20-6, which successfully produced ß-amyrin up to 5.97 mg·L~(-1). Then, the mevalonate pyrophosphate decarboxylase gene(ERG19), mevalonate kinase gene(ERG12), 3-hydroxy-3-methylglutaryl-CoA synthase gene(ERG13), phosphomevalonate kinase gene(ERG8) and IPP isomerase gene(IDI1)were overexpressed to promoted the metabolic fluxto the direction of ß-amyrin synthesis for further improving ß-amyrin production, resulting the strain Y2-C2-4 which produced ß-amyrin of 10.3 mg·L~(-1)under the shake flask fermentation condition. This is 100% higher than that of strain Y1-C20-6, illustrating the positive effect of the metabolic engineering strategy applied in this study. The titer of ß-amyrin was further improved up to 157.4 mg·L~(-1) in the fed-batch fermentation, which was almost 26 fold of that produced by strain Y1-C20-6. This study not only laid the foundation for the biosynthesis of ß-amyrin but also provided a favorable chassis strain for elucidation of cytochrome oxidases and glycosyltransferases of ß-amyrin-based triterpenoids.


Assuntos
Transferases Intramoleculares/genética , Engenharia Metabólica , Ácido Oleanólico/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Fermentação , Glycyrrhiza uralensis/enzimologia , Glycyrrhiza uralensis/genética , Microbiologia Industrial , Ácido Oleanólico/biossíntese
7.
Food Chem ; 448: 138575, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604110

RESUMO

Quinoa sprouts are a green vegetable rich in bioactive chemicals, which have multiple health benefits. However, there is limited information on the overall metabolic profiles of quinoa sprouts and the metabolite changes caused by saline-alkali stress. Here, a UHPLC-MS/MS-based widely targeted metabolomics technique was performed to comprehensively evaluate the metabolic profiles of quinoa sprouts and characterize its metabolic response to saline-alkali stress. A total of 930 metabolites were identified of which 232 showed significant response to saline-alkali stress. The contents of lipids and amino acids were significantly increased, while the contents of flavonoids and phenolic acids were significantly reduced under saline-alkali stress. Moreover, the antioxidant activities of quinoa sprouts were significantly affected by saline-alkali stress. The enrichment analysis of the differentially accumulated metabolites revealed that flavonoid, amino acid and carbohydrate biosynthesis/metabolism pathways responded to saline-alkali stress. This study provided an important theoretical basis for evaluating the nutritional value of quinoa sprouts and the changes in metabolites in response to saline-alkali stress.


Assuntos
Álcalis , Chenopodium quinoa , Flavonoides , Valor Nutritivo , Chenopodium quinoa/química , Chenopodium quinoa/metabolismo , Chenopodium quinoa/crescimento & desenvolvimento , Álcalis/química , Álcalis/metabolismo , Flavonoides/metabolismo , Flavonoides/análise , Flavonoides/química , Cromatografia Líquida de Alta Pressão , Antioxidantes/metabolismo , Antioxidantes/química , Metabolômica , Espectrometria de Massas em Tandem , Aminoácidos/metabolismo , Aminoácidos/análise , Estresse Fisiológico
8.
Food Chem X ; 17: 100594, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845489

RESUMO

Quinoa grains are gaining increasing popularity owing to their high nutritional merits. However, only limited information is available on the metabolic profiles of quinoa grains. In this study, we determined the metabolic profiles of black, red, and white quinoa grains via an ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics. A total of 689 metabolites were identified, among which 251, 182, and 317 metabolites displayed different accumulation patterns in the three comparison groups (Black vs Red, Black vs White, and Red vs White), respectively. In particular, flavonoid and phenolic acid contents displayed considerable differences, with 22 flavonoids, 5 phenolic acids, and 1 betacyanin being differentially accumulated among the three quinoa cultivars. Additionally, correlation analysis showed that flavonoids and phenolic acids could act as betanin co-pigments in quinoa grains. In conclusion, this study provides comprehensive insights into the adequate utilization and development of novel quinoa-based functional foods.

9.
Plant Physiol Biochem ; 194: 696-707, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565614

RESUMO

Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.


Assuntos
Fagopyrum , Rutina , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides/metabolismo , Luciferases/metabolismo , Rutina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
10.
Front Plant Sci ; 14: 1198353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342145

RESUMO

SYP71, a plant-specific Qc-SNARE with multiple subcellular localization, is essential for symbiotic nitrogen fixation in nodules in Lotus, and is implicated in plant resistance to pathogenesis in rice, wheat and soybean. Arabidopsis SYP71 is proposed to participate in multiple membrane fusion steps during secretion. To date, the molecular mechanism underlying SYP71 regulation on plant development remains elusive. In this study, we clarified that AtSYP71 is essential for plant development and stress response, using techniques of cell biology, molecular biology, biochemistry, genetics, and transcriptomics. AtSYP71-knockout mutant atsyp71-1 was lethal at early development stage due to the failure of root elongation and albinism of the leaves. AtSYP71-knockdown mutants, atsyp71-2 and atsyp71-3, had short roots, delayed early development, and altered stress response. The cell wall structure and components changed significantly in atsyp71-2 due to disrupted cell wall biosynthesis and dynamics. Reactive oxygen species homeostasis and pH homeostasis were also collapsed in atsyp71-2. All these defects were likely resulted from blocked secretion pathway in the mutants. Strikingly, change of pH value significantly affected ROS homeostasis in atsyp71-2, suggesting interconnection between ROS and pH homeostasis. Furthermore, we identified AtSYP71 partners and propose that AtSYP71 forms distinct SNARE complexes to mediate multiple membrane fusion steps in secretory pathway. Our findings suggest that AtSYP71 plays an essential role in plant development and stress response via regulating pH homeostasis through secretory pathway.

11.
RSC Adv ; 12(7): 4234-4239, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425439

RESUMO

To obtain high thermostable materials for flexible display substrates, a series of copoly(benzimidazole imide)s was prepared using 5-amine-2-(4-aminobenzene)-1-phenyl-benzimidazole (N-PhPABZ) and 6(5)-amino-2-(4-aminobenzene)-benzimidazole (PABZ). Incorporating N-phenyl groups effectively healed the brittleness of the poly(benzimidazole imide)s (PBIIs) derived from pyromellitic dianhydride (PMDA), and the resultant homo- and copoly(benzimidazole imide)s displayed an outstandingly high glass transition temperature (T g > 450 °C) and a low coefficient of thermal expansion (CTE < 10 ppm K-1). Furthermore, the influence of removing intermolecular hydrogen bonds on the properties of these poly(benzimidazole imide)s was systematically analyzed. These data provide a feasible method to prepare superheat-resistant poly(benzimidazole imide)s without H-bonding.

12.
Chemosphere ; 289: 133205, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890624

RESUMO

Herein, we obtained porous hollow carboxyl-polysulfone (PH-CPSF) microspheres through non-solvent-induced phase separation (NIPS) method and simple modification, used as highly efficient adsorbents for removing cationic dyes from sewage. The resulting PH-CPSF microspheres possess a hollow core and sponge-like shell structure, with high surface area, durable chemical inertness and structural stability. The as-synthesized PH-CPSF microspheres deliver a desirable adsorption effect after deprotonation treatment, with an adsorption capacity reaching up to 154.5 mg g-1 at 25 °C (pH = 7) of methylene blue (MB). The inter-molecular interactions between MB and the surface of the PH-CPSF, including π-π interaction, hydrogen bonding, strong charge attraction and weak charge attraction endow the adsorption ability of the PH-CPSF. The pseudo-second-order kinetic model pronounces in the adsorption behavior, and the adsorption equilibrium data is fitted to the Langmuir model. Moreover, PH-CPSF microspheres can also be used as adsorption fillers for large-scale water purification, and a removal rate of 94.0% for MB can be achieved under a flow rate of 8000 L m-3 h-1. The reusability of 95.3% removal effect for PH-CPSF microspheres after 20 consecutive cycles can be attained by a simple regeneration treatment. The adsorption efficiency of the PH-CPSF microspheres was evaluated by variety of cationic and anionic dyes, with high adsorption capacity toward cationic dyes (100%) and less than 10% toward anionic dyes. These results manifest that PH-CPSF microspheres are a potential adsorbent with long-term purification capabilities, which are expected to be used in small and large-scale sewage treatment.


Assuntos
Corantes , Poluentes Químicos da Água , Adsorção , Microesferas , Polímeros , Porosidade , Sulfonas
13.
Food Chem X ; 14: 100295, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35372824

RESUMO

Tartary buckwheat sprouts have a high nutritional value and are gluten-free, and polyphenols are their main active constituents. However, information regarding the active constituents' difference of Tartary buckwheat sprouts grown from seeds with different morphology, at different developmental stages and environments is limited. Here, we developed a LC-MS-based targeted metabolomics approach to analyze polyphenols (46 flavonoids and 6 anthraquinones) in 40 Tartary buckwheat sprouts varieties. Both flavonoids and anthraquinones contributed to significant differences in sprouts grown from seed with different color or shape. Twenty-seven differential compounds were all at a higher level in 3-day-old sprouts, and the fold change from 3-day-old to 8-day-old sprouts was 1.42-6.64. A total of 25 differential compounds were all significantly upregulated upon UV-B radiation, especially for epicatechin. This study is valuable not only for better breeding cultivars of Tartary buckwheat sprouts, but also assessing their metabolic quality.

14.
Polymers (Basel) ; 13(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494382

RESUMO

Nanosized titanium oxide (TiO2) material is a promising photocatalyst for the degradation of organic pollutants, whereas the difficulty of its recycling hinders its practical application. Herein, we reported the preparation of a novel titanium oxide/polysulfone (TiNPs/PSF) composite hollow microspheres by the combination of Pickering emulsification and the solvent evaporation technique and their application for the photodegradation of methyl blue (MB). P25 TiO2 nanoparticles dispersed on the surface of PSF microspheres. The porosity, density and photoactivity of the TiNPs/PSF composite microsphere are influenced by the TiO2 loading amount. The composite microsphere showed good methyl blue (MB) removal ability. Compared with TiO2 P25, and PSF, a much higher MB adsorption speed was observed for TiNPs/PSF microspheres benefited from their porous structure and the electrostatic attractions between the MB+ and the negatively charged PSF materials, and showed good degradation efficiency. For TiNPs/PSF composite microsphere with density close to 1, a 100% MB removal (10 mg L-1) within 120 min at a catalyst loading of 2.5 g L-1 can be obtained under both stirring and static condition, due to well dispersing of TiO2 particles on the microsphere surface and its stable suspending in water. For the non-suspended TiNPs/PSF composite microsphere with density bigger than 1, the 100% MB removal can be only obtained under stirring condition. The removal efficiency of MB for the composite microspheres retained 96.5%, even after 20 cycles. Moreover, this composite microsphere also showed high MB removal ability at acidic condition. The high catalysis efficiency, excellent reusability and good stability make this kind of TiNPs/PSF composite microsphere a promising photocatalyst for the water organic pollution treatment.

15.
Front Chem ; 9: 753741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34738005

RESUMO

Nanosized titanium oxide (TiO2)-based photocatalysts have exhibited great potential for the degradation of organic contaminants, while their weak absorption of visible light limits the photocatalytic efficiency. Herein, a novel reduced graphene oxide/TiO2-polyphenylenesulfone (rGO/TiO2-PPSU) hybrid ultrafiltration membrane has been successfully prepared via a non-solvent induced phase-separation method, in which the synergistic coupling between the rGO and TiO2 could endowed the fabricated membranes with visible-light-driven efficient photocatalytically degradation of organic pollutants and outstanding photocatalytic and antifouling properties. Compared with the PPSU membranes prepared with Graphene oxide and TiO2, respectively, the rGO/TiO2-PPSU membrane demonstrated significant photodegradation towards phenazopyridine hydrochloride (PhP) solution under ultraviolet light (improved about 71 and 43%) and visible light (improved about 153 and 103%). The permeability and flux recovery rates of the membrane indicated that the high flux of the rGO/TiO2-PPSU membrane can be greatly restored after fouling, due to the improved self-cleaning properties under visible light static irradiation. With the properties of high performance of photocatalytic degradation and good self-cleaning ability, the rGO/TiO2-PPSU membrane would have great potential in water treatment.

16.
RSC Adv ; 11(6): 3770-3776, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424274

RESUMO

5-Amine-2-(4-amino-benzene)-1-phenyl-benzimidazole (N-PhPABZ) was successfully synthesized and polymerized with 3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA) to obtain a novel N-phenyl-poly(benzimidazole imide) (N-Ph-PBII). The successful incorporation of N-phenyl addressed the issue of high H2O-absorption of traditional PBIIs while retained the superheat resistance property. The resulting N-Ph-PBII possessed a high glass-transition temperature (T g) up to 425 °C and a low affinity for water of 1.4%. Furthermore, the loose molecular packing and noncoplanar structures led to an increase in optical transparency for the modified PBII.

17.
RSC Adv ; 11(28): 16924-16930, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479694

RESUMO

A novel diamine named (2,2'-bibenzoxazole)-5,5'-diamine (DBOA) and derived polyimides (PIs) were successfully synthesized. The rigid, linear, symmetrical molecular structure and the strong charge transfer complex (CTC) were considered to be the reasons for the improved molecular packing and enhanced thermal properties of the polymers. These DBOA based PIs exhibited a higher glass transition temperature (T g) and lower coefficient of thermal expansion (CTE) than traditional benzoxazole (BOA) based PIs. Meanwhile, the PI derived from DBOA and BPDA (3,3',4,4'-biphenyltetracarboxylic dianhydride) exhibited high T g (395 °C) and low CTE (8.9 ppm per °C), and is expected to be applied in organic light-emitting diode (OLED) displays.

18.
Front Plant Sci ; 12: 755494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868143

RESUMO

Histone deacetylases (HDACs) play crucial roles nearly in all aspects of plant biology, including stress responses, development and growth, and regulation of secondary metabolite biosynthesis. The molecular functions of HDACs have been explored in depth in Arabidopsis thaliana, while little research has been reported in the medicinal plant Cannabis sativa L. Here, we excavated 14 CsHDAC genes of C. sativa L that were divided into three relatively conserved subfamilies, including RPD3/HDA1 (10 genes), SIR2 (2 genes), and HD2 (2 genes). Genes associated with the biosynthesis of bioactive constituents were identified by combining the distribution of cannabinoids with the expression pattern of HDAC genes in various organs. Using qRT-PCR and transcription group analysis, we verified the expression of candidate genes in different tissues. We found that the histone inhibitor Trichostatin A (TSA) affected the expression of key genes in the cannabinoid metabolism pathway and the accumulation of synthetic precursors, which indirectly indicates that histone inhibitor may regulate the synthesis of active substances in C. sativa L.

19.
Polymers (Basel) ; 12(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069842

RESUMO

To achieve polyimide-metal complexes with enhanced properties, 5-amine-2-(5-aminopyridin-2-yl)-1-methyl-benzimidazole (PyMePABZ) that contains stiff 2-(2'-pyridyl)benzimidazole (PyBI) was synthesized and exploited to construct the Cu(ΙΙ)-crosslinked polyimides (Cu-PIs). These Cu-PIs exhibited higher dielectric, thermal, and mechanical properties with an increase in Cu2+ content. Among them, their dielectric constants (εrS) were up to 43% superior to that of the neat PI, glass transition temperatures (Tgs) were all over 400 °C, and 5% weight loss temperature (T5%) maintained beyond 500 °C. These data indicate that the metal coordination crosslinking provided a useful guide to develop high performance PIs which possess potential application as useful high temperature capacitors.

20.
J Vis Exp ; (157)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32225142

RESUMO

Tartary buckwheat (TB) [Fagopyrum tataricum (L.) Gaertn] possesses various biological and pharmacological activities because it contains abundant secondary metabolites such as flavonoids, especially rutin. Agrobacterium rhizogenes have been gradually used worldwide to induce hairy roots in medicinal plants to investigate gene functions and increase the yield of secondary metabolites. In this study, we have described a detailed method to generate A. rhizogenes-mediated hairy roots in TB. Cotyledons and hypocotyledonary axis at 7-10 days were selected as explants and infected with A. rhizogenes carrying a binary vector, which induced adventitious hairy roots that appeared after 1 week. The generated hairy root transformation was identified based on morphology, resistance selection (kanamycin), and reporter gene expression (green fluorescent protein). Subsequently, the transformed hairy roots were self-propagated as required. Meanwhile, a myeloblastosis (MYB) transcription factor, FtMYB116, was transformed into the TB genome using the A. rhizogenes-mediated hairy roots to verify the role of FtMYB116 in synthesizing flavonoids. The results showed that the expression of flavonoid-related genes and the yield of flavonoid compounds (rutin and quercetin) were significantly (p < 0.01) promoted by FtMYB116, indicating that A. rhizogenes-mediated hairy roots can be used as an effective alternative tool to investigate gene functions and the production of secondary metabolites. The detailed step-by-step protocol described in this study for generating hairy roots can be adopted for any genetic transformation or other medicinal plants after adjustment.


Assuntos
Agrobacterium/metabolismo , Fagopyrum/genética , Fagopyrum/microbiologia , Raízes de Plantas/microbiologia , Transformação Genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Rutina/biossíntese , Rutina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA