Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 112(9): 1283-1296, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30941531

RESUMO

The rumen microbiome contributes greatly to the degradation of plant fibres to volatile fatty acids and microbial products, affecting the health and productivity of ruminants. In this study, we investigated the dynamics of colonisation by bacterial communities attached to reeds and cottonseed hulls in the rumen of Tarim red deer, a native species distributed in the desert of the Tarim Basin. The reed and cottonseed hull samples incubated in nylon bags for 1, 6, 12, and 48 h were collected and used to examine the bacterial communities by next-generation sequencing of the bacterial 16S rRNA gene. Prevotella1 and Rikenellaceae RC9 were the most abundant taxa in both the reed and cottonseed hull groups at various times, indicating a key role of these organisms in rumen fermentation in Tarim red deer. The relative abundances of cellulolytic bacteria, such as members of Fibrobacter, Treponema 2, Ruminococcaceae NK4A214 and Succiniclasticum increased, while that of the genus Prevotella 1 decreased, with increasing incubation time in both reeds and cottonseed hulls. Moreover, the temporal changes in bacterial diversity between reeds and cottonseed hulls were different, as demonstrated by the variations in the taxa Ruminococcaceae UCG 010 and Papillibacter in the reed group and Sphaerochaeta and Erysipelotrichaceae UCG 004 in the cottonseed hull group; the abundances of these bacteria first decreased and then increased. In conclusion, our results reveal the dynamics of bacterial colonisation of reeds and cottonseed hulls in the rumen of Tarim red deer.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Cervos/microbiologia , Gossypium/microbiologia , Poaceae/microbiologia , Rúmen/microbiologia , Animais , Bactérias/metabolismo , Celulose/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Can J Microbiol ; 64(7): 501-509, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29562140

RESUMO

The ruminal microbiota plays major roles in feed digestion. The composition and fermentation of the bacterial communities in 3 important ruminant species have been studied previously. Here, we extended this research to the effect of concentrate-to-forage ratios on ruminal bacterial communities in Tarim red deer (Cervus elaphus yarkandensis). Different concentrate-to-forage ratios (2:8, 3:7, 4:6, and 5:5) were fed to Tarim red deer for 20 days. Ruminal bacterial communities were elucidated by 16S ribosomal RNA gene sequencing on an Illumina HiSeq 2500 platform. The microbial composition and biodiversity at the different concentrate-to-forage ratio levels were analyzed using clustering of operational taxonomic units based on 97% sequence identity, taxonomic classification at the phylum and genus levels, α diversity, and ß diversity. Rumen microorganisms of deer fed a diet with a concentrate-to-forage ratio of 2:8 had the highest species diversity, followed by ratios of 3:7, 4:6, and 5:5. The community structure of the A1 and A2 samples and the A3 and A4 samples was similar. The bacterial composition appeared to be affected by diet, with a lower dietary concentrate level tending to increase the richness and diversity of ruminal bacteria in the rumen of Tarim red deer.


Assuntos
Biodiversidade , Cervos/microbiologia , Dieta/veterinária , Microbioma Gastrointestinal , Rúmen/microbiologia , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , RNA Ribossômico 16S/genética
3.
Can J Microbiol ; 63(5): 375-383, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28177790

RESUMO

The rumen microbiota plays a major role in the metabolism and absorption of indigestible food sources. Xinjiang brown cattle (Bos taurus), Tarim red deer (Cervus elaphus yarkandensis), and Karakul sheep (Ovis aries) are important ruminant species for animal husbandry in the Tarim Basin. However, the microbiota and rumen fermentation of these animals are poorly understood. Here, we apply high-throughput sequencing to examine the bacterial community in the rumen of cattle, red deer, and sheep and measured rumen fermentation products. Overall, 548 218 high-quality sequences were obtained and then classified into 6034 operational taxonomic units. Prevotella spp., Succiniclasticum spp., and unclassified bacteria within the families Succinivibrionaceae, Lachnospiraceae, and Veillonellaceae were the dominant bacteria in the rumen across the 3 hosts. Principal coordinate analysis identified significant differences in the bacterial communities across the 3 hosts. Pseudobutyrivibrio spp., Oscillospira spp., and Prevotella spp. were more prevalent in the rumen of the cattle, red deer, and sheep, respectively. Among the 3 hosts, the red deer rumen had the greatest amounts of acetate and butyrate and the lowest pH value. These results showed that Prevotella spp. are the dominant bacteria in the rumen of the cattle, red deer, and sheep, providing new insight into the rumen fermentation of ruminants distributed in the Tarim Basin.


Assuntos
Bactérias/metabolismo , Cervos/microbiologia , Microbioma Gastrointestinal , Rúmen/microbiologia , Carneiro Doméstico/microbiologia , Animais , Bovinos , Fermentação , Ovinos
4.
Microorganisms ; 12(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276201

RESUMO

The rumen is divided into multiple rumen sacs based on anatomical structure, and each has its unique physiological environment. Tarim wapiti preserved roughage tolerance after domestication, and adaptation to the desertified environment led to the development of a unique rumen shape and intraruminal environment. In this work, six Tarim wapiti were chosen and tested for fermentation parameters, microbes, and histomorphology in four rumen areas (Dorsal sac, DS; Ventral sac, VS; Caudodorsal blind sac, CDBS; Caudoventral blind sac, CVBS). Tarim wapiti's rumen blind sac had better developed rumen histomorphology, the ventral sac was richer in VFAs, and the dominant bacteria varied most notably in the phylum Firmicutes, which was enriched in the caudoventral blind sac. The ventral sac biomarkers focused on carbohydrate fermentation-associated bacteria, the dorsal sac focused on N recycling, and the caudoventral blind sac identified the only phylum-level bacterium, Firmicutes; we were surprised to find a probiotic bacterium, Bacillus clausii, identified as a biomarker in the ventral sac. This research provides a better understanding of rumen fermentation parameters, microorganisms, and histomorphology in the Tarim wapiti rumen within a unique ecological habitat, laying the groundwork for future regulation targeting the rumen microbiota and subsequent animal production improvement.

6.
Environ Microbiol Rep ; 8(6): 1016-1023, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27717170

RESUMO

The rumen microbiota plays important roles in nutrient metabolism and absorption of the host. However, it is poorly understood how host genetic variation shapes the community structure of the rumen microbiota and its metabolic phenotype. Here, we used sika deer (Cervus nippon) and elk (Cervus elaphus) to produce the following two types of hybrid offspring: sika deer ♀ × elk ♂ (SEH) and elk ♀ × sika deer ♂ (ESH). Then, we examined the rumen microbiome and metabolites in the parents and their hybrid offspring. The rumen microbiota in the hybrids differed from that in their parents, suggesting a significant effect of host genetics on the rumen microbiome that may have resulted from vertical transmission. The rumen metabolites displayed patterns similar to the structure of the rumen microbiome, with changes in the amounts of volatile fatty acids and metabolites of amino acids. The alanine, arginine, proline and phenylalanine pathways were enriched in the rumen of hybrid animals. The enriched metabolites in the above pathways were positively correlated with the bacteria Prevotella spp., Acetitomaculum spp., Quinella spp., Succinivibrio spp. and Ruminobacter spp. These results suggest that host genetics has a major impact on the rumen microbiome and metabolites in hybrid animals.


Assuntos
Cruzamentos Genéticos , Cervos/genética , Metaboloma , Microbiota , Rúmen/química , Rúmen/microbiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA