Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Mol Cell Proteomics ; 23(5): 100750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513891

RESUMO

Spatial tissue proteomics integrating whole-slide imaging, laser microdissection, and ultrasensitive mass spectrometry is a powerful approach to link cellular phenotypes to functional proteome states in (patho)physiology. To be applicable to large patient cohorts and low sample input amounts, including single-cell applications, loss-minimized and streamlined end-to-end workflows are key. We here introduce an automated sample preparation protocol for laser microdissected samples utilizing the cellenONE robotic system, which has the capacity to process 192 samples in 3 h. Following laser microdissection collection directly into the proteoCHIP LF 48 or EVO 96 chip, our optimized protocol facilitates lysis, formalin de-crosslinking, and tryptic digest of low-input archival tissue samples. The seamless integration with the Evosep ONE LC system by centrifugation allows 'on-the-fly' sample clean-up, particularly pertinent for laser microdissection workflows. We validate our method in human tonsil archival tissue, where we profile proteomes of spatially-defined B-cell, T-cell, and epithelial microregions of 4000 µm2 to a depth of ∼2000 proteins and with high cell type specificity. We finally provide detailed equipment templates and experimental guidelines for broad accessibility.


Assuntos
Microdissecção e Captura a Laser , Proteômica , Fluxo de Trabalho , Humanos , Proteômica/métodos , Microdissecção e Captura a Laser/métodos , Tonsila Palatina/citologia , Tonsila Palatina/metabolismo , Automação , Proteoma , Linfócitos B/metabolismo , Linfócitos B/citologia , Espectrometria de Massas/métodos , Linfócitos T/metabolismo , Linfócitos T/citologia
2.
Skin Res Technol ; 30(7): e13840, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965811

RESUMO

BACKGROUND: Psoriasis is a chronic inflammatory disease that causes significant disability. However, little is known about the underlying metabolic mechanisms of psoriasis. Our study aims to investigate the causality of 975 blood metabolites with the risk of psoriasis. MATERIALS AND METHODS: We mainly applied genetic analysis to explore the possible associations between 975 blood metabolites and psoriasis. The inverse variance weighted (IVW) method was used as the primary analysis to assess the possible association of blood metabolites with psoriasis. Moreover, generalized summary-data-based Mendelian randomization (GSMR) was used as a supplementary analysis. In addition, linkage disequilibrium score regression (LDSC) was used to investigate their genetic correction further. Metabolic pathway analysis of the most suggested metabolites was also performed using MetaboAnalyst 5.0. RESULTS: In our primary analysis, 17 metabolites, including unsaturated fatty acids, phospholipids, and triglycerides traits, were selected as potential factors in psoriasis, with odd ratios (OR) ranging from 0.986 to 1.01. The GSMR method confirmed the above results (ß = 0.001, p < 0.05). LDSC analysis mainly suggested the genetic correlation of psoriasis with genetic correlations (rg) from 0.088 to 0.155. Based on the selected metabolites, metabolic pathway analysis suggested seven metabolic pathways including ketone body that may be prominent pathways for metabolites in psoriasis. CONCLUSION: Our study supports the causal role of unsaturated fatty acid properties and lipid traits with psoriasis. These properties may be regulated by the ketone body metabolic pathway.


Assuntos
Análise da Randomização Mendeliana , Psoríase , Psoríase/sangue , Psoríase/genética , Psoríase/metabolismo , Humanos , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Desequilíbrio de Ligação , Metaboloma/fisiologia , Metaboloma/genética , Redes e Vias Metabólicas/genética
3.
J Headache Pain ; 25(1): 67, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679721

RESUMO

BACKGROUND: Acupuncture showed better improvement than sham acupuncture in reducing attack frequency of tension-type headache (TTH), but its effectiveness relative to first-line drugs for TTH is unknown, which impedes the recommendation of acupuncture for patients who are intolerant to drugs for TTH. We aimed to estimate the relative effectiveness between acupuncture and tricyclic antidepressants (TCAs) through indirect treatment comparison (ITC) meta-analysis. METHODS: We searched Ovid Medline, Embase, and Cochrane Library from database inception until April 13, 2023. Randomized controlled trials of TCAs or acupuncture in the prevention of TTH in adults were included. The primary outcome was headache frequency. The secondary outcomes were headache intensity, responder rate, and adverse event rate. Bayesian random-effect models were used to perform ITC meta-analysis, and confidence of evidence was evaluated by using the GRADE approach. RESULTS: A total of 34 trials involving 4426 participants were included. Acupuncture had similar effect with TCAs in decreasing TTH frequency (amitriptyline: mean difference [MD] -1.29, 95% CI -5.28 to 3.02; amitriptylinoxide: MD -0.05, 95% CI -6.86 to 7.06) and reducing TTH intensity (amitriptyline: MD 2.35, 95% CI -1.20 to 5.78; clomipramine: MD 1.83, 95% CI -4.23 to 8.20). Amitriptyline had a higher rate of adverse events than acupuncture (OR 4.73, 95% CI 1.42 to 14.23). CONCLUSION: Acupuncture had similar effect as TCAs in reducing headache frequency of TTH, and acupuncture had a lower adverse events rate than amitriptyline, as shown by very low certainty of evidence.


Assuntos
Terapia por Acupuntura , Antidepressivos Tricíclicos , Cefaleia do Tipo Tensional , Humanos , Cefaleia do Tipo Tensional/terapia , Cefaleia do Tipo Tensional/prevenção & controle , Cefaleia do Tipo Tensional/tratamento farmacológico , Antidepressivos Tricíclicos/uso terapêutico , Terapia por Acupuntura/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Fish Shellfish Immunol ; 134: 108560, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681363

RESUMO

Prohibitin 2 (PHB2) is an evolutionarily conserved and functionally diverse protein that plays an important role in multiple cellular functions, including cell proliferation, cell migration, and apoptosis, and is also known to participate in the process of tumorigenesis and development. In this study, the lamprey PHB2 (Lm-PHB2) gene was over-expressed in KRAS (kirsten rat sarcoma viral oncogene homolog)-mutated non-small cell lung carcinoma (NSCLC) cells to investigate its effect on cell proliferation. The effects of Lm-PHB2 protein on the proliferation of NSCLC cells were determined by treating cells with the purified recombinant Lm-PHB2 protein (rLm-PHB2) followed by cell counting kit (CCK) assays and flow cytometry. Analysis showed that rLm-PHB2 blocked cells in the G2 phase and inhibited the cell proliferation of A549, Calu-1, and NCI-H226 to various degrees. The effect on Calu-1 cells was the most obvious and was concentration- and time-dependent. Similarly, cells transfected with the pEGFP-N1-Lm-PHB2 plasmid also resulted in the suppression of proliferation in A549 cells and Calu-1 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that Lm-PHB2 inhibited cell proliferation by repressing the transcription of PLK1 (polo-like kinase 1), Wee1 (wee1 kinase), CCNB1 (cyclin B1), and CDC25C (cell division control protein 25C). According to western blot analysis, Lm-PHB2 not only down-regulated the expression of PLK1, Wee1, CCNB1, and CDC25C but also reduced the phosphorylation levels of CCNB1 and CDC25C, thus blocking Calu-1 cells in G2/M phase. Our findings demonstrate a function of lamprey PHB2 that may inhibit the proliferation of some NSCLC cells by down-regulating the expression and phosphorylation of cell cycle-associated proteins.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Fosforilação , Lampreias , Proibitinas , Proliferação de Células/fisiologia , Ciclo Celular , Linhagem Celular Tumoral , Apoptose
5.
Plant Dis ; 107(8): 2325-2334, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37596715

RESUMO

Banana (Musa spp.) is an important fruit and food crop worldwide. In recent years, banana sheath rot has become a major problem in banana cultivation, causing plant death and substantial economic losses. Nevertheless, the pathogen profile of this disease has not been fully characterized. Klebsiella variicola is a versatile bacterium capable of colonizing different hosts, such as plants, humans, insects, and animals, and is recognized as an emerging pathogen in various hosts. In this study, we obtained 12 bacterial isolates from 12 different banana samples showing banana sheath rot in Guangdong and Guangxi Provinces, China. Phylogenetic analysis based on 16S rRNA sequences confirmed that all 12 isolates were K. variicola strains. We sequenced the genomes of these strains, performed comparative genomic analysis with other sequenced K. variicola strains, and found a lack of consistency in accessory gene content among these K. variicola strains. However, prediction based on the pan-genome of K. variicola revealed 22 unique virulence factors carried by the 12 pathogenic K. variicola isolates. Microbiome and microbial interaction network analysis of endophytes between the healthy tissues of diseased plants and healthy plants of two cultivars showed that Methanobacterium negatively interacts with Klebsiella in banana plants and that Herbaspirillum might indirectly inhibit Methanobacterium to promote Klebsiella growth. These results suggest that banana sheath rot is caused by the imbalance of plant endophytes and opportunistic pathogenic bacteria, providing an important basis for research and control of this disease.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Musa , Animais , Humanos , Filogenia , RNA Ribossômico 16S/genética , China , Klebsiella/genética , Endófitos
6.
Acta Neurol Scand ; 143(5): 558-568, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33393102

RESUMO

BACKGROUND: Botulinum neurotoxin A (BoNT-A) was the primary choice for preventive treatment of chronic migraine. Topiramate and acupuncture showed promising effect for chronic migraine, but their effectiveness relative to BoNT-A was rarely studied. We aimed to perform a network meta-analysis to compare the effectiveness and acceptability between topiramate, acupuncture, and BoNT-A. METHODS: We searched OVID Medline, Embase, the Cochrane register of controlled trials (CENTRAL), the Chinese Clinical Trial Register, and clinicaltrials.gov for randomized controlled trials (RCTs) that compared topiramate, acupuncture, and BoNT-A with any of them or placebo in the preventive treatment of chronic migraine. A network meta-analysis was performed by using a frequentist approach and a random-effects model. The primary outcomes were reduction in monthly headache days and monthly migraine days at week 12. Acceptability was defined as the number of dropouts owing to adverse events. RESULTS: We included 15 RCTs (n = 2545). Eleven RCTs were at low risk of bias. The network meta-analyses (n = 2061) showed that acupuncture (2061 participants; standardized mean difference [SMD] -1.61, 95% CI: -2.35 to -0.87) and topiramate (582 participants; SMD -0.4, 95% CI: -0.75 to -0.04) ranked the most effective in the reduction of monthly headache days and migraine days, respectively; but they were not significantly superior over BoNT-A. Topiramate caused the most treatment-related adverse events and the highest rate of dropouts owing to adverse events. CONCLUSIONS: Topiramate and acupuncture were not superior over BoNT-A; BoNT-A was still the primary preventive treatment of chronic migraine. Large-scale RCTs with direct comparison of these three treatments are warranted to verified the findings.


Assuntos
Terapia por Acupuntura/métodos , Toxinas Botulínicas Tipo A/uso terapêutico , Transtornos de Enxaqueca/prevenção & controle , Topiramato/uso terapêutico , Adulto , Feminino , Humanos , Metanálise em Rede
7.
J Cell Mol Med ; 24(21): 12813-12825, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32979037

RESUMO

Obesity-induced activation and proliferation of resident macrophages and infiltration of circulating monocytes in adipose tissues contribute to adipose tissue inflammation and insulin resistance. These effects further promote the development of metabolic syndromes, such as type 2 diabetes, which is one of the most prevalent health conditions severely threatening human health worldwide. Our study examined the potential molecular mechanism employed by fibroblast growth factor 1 (FGF1) to improve insulin sensitivity. The leptin receptor-deficient obese mice (db/db) served as an insulin-resistant model. Our results demonstrated that FGF1-induced amelioration of insulin resistance in obese mice was related to the decreased levels of pro-inflammatory adipose tissue macrophages (ATMs) and plasma inflammatory factors. We found that FGF1 enhanced the adipocyte mTORC2/Rictor signalling pathway to inhibit C-C chemokine ligand 2 (CCL2) production, the major cause of circulating monocytes infiltration, activation and proliferation of resident macrophages in adipose tissues. Conversely, these alleviating effects of FGF1 were substantially abrogated in adipocytes with reduced expression of mTORC2/rictor. Furthermore, a model of adipocyte-specific mTORC2/Rictor-knockout (AdRiKO) obese mice was developed to further understand the in vitro result. Altogether, these results demonstrated adipocyte mTORC2/Rictor was a crucial target for FGF1 function on adipose tissue inflammation and insulin sensitivity.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/patologia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Inflamação/patologia , Resistência à Insulina , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Quimiocinas/genética , Quimiocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Regulação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Modelos Biológicos , Obesidade/complicações , Obesidade/patologia , Proteoma/metabolismo , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos
8.
BMC Plant Biol ; 20(1): 399, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859172

RESUMO

BACKGROUND: Soybean oil is a complex mixture of five fatty acids (palmitic, stearic, oleic, linoleic, and linolenic). Soybean oil with a high oleic acid content is desirable because this monounsaturated fatty acid improves the oxidative stability of the oil. To investigate the genetic architecture of oleic acid in soybean seeds, 260 soybean germplasms from Northeast China were collected as natural populations. A genome-wide association study (GWAS) was conducted on a panel of 260 germplasm resources. RESULTS: Phenotypic identification results showed that the oleic acid content varied from 8.2 to 35.0%. A total of 2,311,337 single-nucleotide polymorphism (SNP) markers were obtained. GWAS analysis showed that there were many genes related to oleic acid content with a contribution rate of 7%. The candidate genes Glyma.11G229600.1 on chromosome 11 and Glyma.04G102900.1 on chromosome 4 were detected in a 2-year-long GWAS. The candidate gene Glyma.11G229600.1 showed a positive correlation with the oleic acid content, and the correlation coefficient was 0.980, while Glyma.04G102900.1 showed a negative correlation, with a coefficient of - 0.964. CONCLUSIONS: Glyma.04G102900.1 on chromosome 4 and Glyma.11G229600.1 on chromosome 11 were detected in both analyses (2018 and 2019). Glyma.04G102900.1 and Glyma.11G229600.1 are new key candidate genes related to oleic acid in soybean seeds. These results will be useful for high-oleic soybean breeding.


Assuntos
Genes de Plantas , Estudo de Associação Genômica Ampla , Glycine max/genética , Ácido Oleico/genética , Polimorfismo de Nucleotídeo Único , Óleo de Soja/genética , China , Marcadores Genéticos , Genoma de Planta , Ácido Oleico/metabolismo , Sementes/química , Óleo de Soja/metabolismo , Glycine max/química
9.
Fish Shellfish Immunol ; 104: 613-621, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32592929

RESUMO

Before we have reported lamprey PHB2 could enhance the cellular oxidative-stressed tolerance, here the aim was to explore its mechanisms. We used flow cytometry analysis to identify a Lampetra morii homologue of PHB2 (Lm-PHB2) that could significantly decrease the levels of ROS generation in HEK293T cells. According to confocal microscopy observations, Lm-PHB2 contributed to maintain the mitochondrial morphology of HEK293T cells, and then both cellular nuclear location and translocation from the nucleus to mitochondria of Lm-PHB2 were also examined in HEK293T cells under oxidative stress. We also examined the expressions and locations of various Lm-PHB2 deletion mutants and the amino acid mutant by confocal microscopy and the results showed that the translocation of Lm-PHB2 into mitochondria was dependent on the Lm-PHB21-50aa region and the 17th, 48th and 57th three arginines (R) of N-terminal were very critical. In addition, the analyses of QRT-PCR and Western blot demonstrated that Lm-PHB2 increased the expression levels of OPA1 and HAX1 in HEK293T cells treated with H2O2. The analyses of immunofluorescence and immunoprecipitation showed that Lm-PHB2 could interact with OPA1 and HAX1, respectively. The above mentioned results indicate that Lm-PHB2 could assist OPA1 and HAX1 to maintain mitochondrial morphology and decrease ROS levels by the translocation from the nucleus to mitochondria under oxidative stress.


Assuntos
Proteínas de Peixes/genética , Lampreias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo , Proteínas Repressoras/genética , Animais , Núcleo Celular/metabolismo , Proteínas de Peixes/metabolismo , Lampreias/metabolismo , Proibitinas , Proteínas Repressoras/metabolismo , Translocação Genética
10.
BMC Biotechnol ; 19(1): 66, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615488

RESUMO

BACKGROUND: Cry8-like from Bacillus thuringiensis (Bt) encodes an insecticidal crystal (Cry) protein. Holotrichia parallela (Coleoptera: Scarabaeoidae), commonly known as the dark black chafer, is a troublesome pest of soybean (Glycine max). To test whether cry8-like can confer resistance against H. parallela to soybean, we introduced cry8-like from the Bt strain HBF-18 into soybean cultivar Jinong 28. RESULTS: Quantitative reverse transcription-PCR analysis demonstrated that cry8-like was expressed most highly in soybean leaves. In addition, Southern blot assays revealed that one copy of the integrated fragment was present in the transformed plants. Eight independent cry8-like transgenic lines were subsequently fed on by H. parallela. Under H. parallela feeding stress, the survival rates of the non-transgenic plants were 92% lower than those of the transgenic plants. The mortality rate of H. parallela increased when the larvae fed on the roots of T1 transgenic soybean plants. Moreover, the surviving larvae were deformed, and their growth was inhibited. CONCLUSIONS: Collectively, our data suggest that transgenic soybean plants expressing the cry8-like gene are more resistant to H. parallela than non-transgenic plants and that transgenic expression of the cry8-like gene may represent a promising strategy for engineering pest tolerance. The events generated in this study could thus be utilized in soybean breeding programs.


Assuntos
Bacillus thuringiensis/metabolismo , Toxinas Bacterianas/metabolismo , Besouros/microbiologia , Besouros/patogenicidade , Glycine max/parasitologia , Proteínas Hemolisinas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Animais , Toxinas Bacterianas/genética , Proteínas Hemolisinas/genética , Controle Biológico de Vetores
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(2): 145-151, 2019 Mar.
Artigo em Zh | MEDLINE | ID: mdl-31106530

RESUMO

OBJECTIVE: To test the killing effect of type Ⅰ receptor tyrosine kinase-like orphan receptor (ROR1) chimeric antigen receptor T cell (CAR-T) on several ROR1-expressing tumor cells in vitro. METHODS: The CAR gene was designed and synthesized by constructing the lentiviral vector plasmid, and BamHⅠ/EcoRⅠ was used to identify the plasmid. The expression levels of ROR1 among a variety of tumor cell lines were compared using flow cytometry (FCM). The killing effect of CAR-T on positive cells was detected by FCM, the LDH assay and ELISA. RESULTS: The double enzyme digestion identified CAR gene was successfully constructed to the lentivirus vector plasmid. FCM detection showed that the efficiency of CAR-T infection was about 47.23%. Multiple tumor cells expressed ROR1 in varying degrees. The FCM and the LDH assay indicated that CAR-T specifically killed ROR1-positive tumor cells. On positive target cells, more interferonI-γ (FN-γ) could be released during the CAR-T killing process than control T (P<0.05). CONCLUSION: We successfully constructed ROR1 CAR-T. CAR-T can specifically kill ROR1-positive tumor cells and cause the release of large amounts of IFN-γ, providing an experimental basis for clinical application.


Assuntos
Imunoterapia Adotiva , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Linfócitos T/citologia , Linhagem Celular Tumoral , Humanos , Lentivirus
12.
PLoS Pathog ; 12(4): e1005605, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27128969

RESUMO

Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is a gammaherpesvirus etiologically associated with KS, a highly disseminated angiogenic tumor of hyperproliferative spindle endothelial cells. KSHV encodes 25 mature microRNAs but their roles in KSHV-induced tumor dissemination and angiogenesis remain unknown. Here, we investigated KSHV-encoded miR-K12-6-3p (miR-K6-3p) promotion of endothelial cell migration and angiogenesis, which are the underlying mechanisms of tumor dissemination and angiogenesis. We found that ectopic expression of miR-K6-3p promoted endothelial cell migration and angiogenesis. Mass spectrometry, bioinformatics and luciferase reporter analyses revealed that miR-K6-3p directly targeted sequence in the 3' untranslated region (UTR) of SH3 domain binding glutamate-rich protein (SH3BGR). Overexpression of SH3BGR reversed miR-K6-3p induction of cell migration and angiogenesis. Mechanistically, miR-K6-3p downregulated SH3BGR, hence relieved STAT3 from SH3BGR direct binding and inhibition, which was required for miR-K6-3p maximum activation of STAT3 and induction of cell migration and angiogenesis. Finally, deletion of miR-K6 from the KSHV genome abrogated its effect on the SH3BGR/STAT3 pathway, and KSHV-induced migration and angiogenesis. Our results illustrated that, by inhibiting SH3BGR, miR-K6-3p enhances cell migration and angiogenesis by activating the STAT3 pathway, and thus contributes to the dissemination and angiogenesis of KSHV-induced malignancies.


Assuntos
MicroRNAs , Proteínas Musculares/metabolismo , Neovascularização Patológica/metabolismo , RNA Viral , Fator de Transcrição STAT3/metabolismo , Sarcoma de Kaposi/patologia , Animais , Western Blotting , Movimento Celular/fisiologia , Herpesvirus Humano 8/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Nus , Microscopia Confocal , Neovascularização Patológica/genética , Reação em Cadeia da Polimerase , Transdução de Sinais/fisiologia , Transfecção
13.
J Virol ; 90(19): 8739-53, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440900

RESUMO

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) infection is required for the development of several AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The high incidence of AIDS-KS has been ascribed to the interaction of KSHV and HIV-1. We have previously shown that HIV-1-secreted proteins Tat and Nef regulate the KSHV life cycle and synergize with KSHV oncogenes to promote angiogenesis and tumorigenesis. Here, we examined the regulation of KSHV latency by HIV-1 viral protein R (Vpr). We found that soluble Vpr inhibits the expression of KSHV lytic transcripts and proteins, as well as viral particle production by activating NF-κB signaling following internalization into PEL cells. By analyzing the expression profiles of microRNAs combined with target search by bioinformatics and luciferase reporter analyses, we identified a Vpr-upregulated cellular microRNA (miRNA), miR-942-5p, that directly targeted IκBα. Suppression of miR-942-5p relieved the expression of IκBα and reduced Vpr inhibition of KSHV lytic replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV lytic replication. Our findings collectively illustrate that, by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized HIV-1 Vpr inhibits KSHV lytic replication. These results have demonstrated an essential role of Vpr in the life cycle of KSHV. IMPORTANCE: Coinfection by HIV-1 promotes the aggressive growth of Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). In this study, we have shown that soluble HIV-1 Vpr inhibits KSHV lytic replication by activating NF-κB signaling following internalization into PEL cells. Mechanistic studies revealed that a cellular microRNA upregulated by Vpr, miR-942-5p, directly targeted IκBα. Suppression of miR-942-5p relieved IκBα expression and reduced Vpr inhibition of KSHV replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV replication. These results indicate that by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized Vpr inhibits KSHV lytic replication. This work illustrates a molecular mechanism by which HIV-1-secreted regulatory protein Vpr regulates KSHV latency and the pathogenesis of AIDS-related malignancies.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Ativação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Células HEK293 , Humanos , Interações Microbianas , Transdução de Sinais
14.
PLoS Pathog ; 11(9): e1005171, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26402907

RESUMO

Kaposi's sarcoma (KS) is a highly disseminated angiogenic tumor of endothelial cells linked to infection by Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV encodes more than two dozens of miRNAs but their roles in KSHV-induced tumor dissemination and metastasis remain unknown. Here, we found that ectopic expression of miR-K12-3 (miR-K3) promoted endothelial cell migration and invasion. Bioinformatics and luciferase reporter analyses showed that miR-K3 directly targeted G protein-coupled receptor (GPCR) kinase 2 (GRK2, official gene symbol ADRBK1). Importantly, overexpression of GRK2 reversed miR-K3 induction of cell migration and invasion. Furthermore, the chemokine receptor CXCR2, which was negatively regulated by GRK2, was upregulated in miR-K3-transduced endothelial cells. Knock down of CXCR2 abolished miR-K3-induced cell migration and invasion. Moreover, miR-K3 downregulation of GRK2 relieved its direct inhibitory effect on AKT. Both CXCR2 induction and the release of AKT from GRK2 were required for miR-K3 maximum activation of AKT and induction of cell migration and invasion. Finally, deletion of miR-K3 from the KSHV genome abrogated its effect on the GRK2/CXCR2/AKT pathway and KSHV-induced migration and invasion. Our data provide the first-line evidence that, by repressing GRK2, miR-K3 facilitates cell migration and invasion via activation of CXCR2/AKT signaling, which likely contribute to the dissemination of KSHV-induced tumors.


Assuntos
Endotélio Vascular/virologia , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , RNA Viral/metabolismo , Internalização do Vírus , Movimento Celular , Células Cultivadas , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Repressão Enzimática , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Deleção de Genes , Herpesvirus Humano 8/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Mutação , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/metabolismo , Interferência de RNA , Receptores de Interleucina-8B/agonistas , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sarcoma de Kaposi/imunologia , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Transdução de Sinais
15.
Nucleic Acids Res ; 43(19): 9362-78, 2015 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-26446987

RESUMO

Co-infection with HIV-1 and Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of aggressive AIDS-related Kaposi's sarcoma (AIDS-KS) characterized by abnormal angiogenesis. The impact of HIV-1 and KSHV interaction on the pathogenesis and extensive angiogenesis of AIDS-KS remains unclear. Here, we explored the synergistic effect of HIV-1 Tat and KSHV oncogene Orf-K1 on angiogenesis. Our results showed that soluble Tat or ectopic expression of Tat enhanced K1-induced cell proliferation, microtubule formation and angiogenesis in chorioallantoic membrane and nude mice models. Mechanistic studies revealed that Tat promoted K1-induced angiogenesis by enhancing NF-κB signaling. Mechanistically, we showed that Tat synergized with K1 to induce the expression of miR-891a-5p, which directly targeted IκBα 3' untranslated region, leading to NF-κB activation. Consequently, inhibition of miR-891a-5p increased IκBα level, prevented nuclear translocation of NF-κB p65 and ultimately suppressed the synergistic effect of Tat- and K1-induced angiogenesis. Our results illustrate that, by targeting IκBα to activate the NF-κB pathway, miR-891a-5p mediates Tat and K1 synergistic induction of angiogenesis. Therefore, the miR-891a-5p/NF-κB pathway is important in the pathogenesis of AIDS-KS, which could be an attractive therapeutic target for AIDS-KS.


Assuntos
Carcinogênese/genética , HIV-1 , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Neovascularização Fisiológica , Proteínas do Envelope Viral/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Carcinogênese/metabolismo , Linhagem Celular , Proliferação de Células , Embrião de Galinha , Humanos , Proteínas I-kappa B/antagonistas & inibidores , Proteínas I-kappa B/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Microtúbulos/ultraestrutura , Inibidor de NF-kappaB alfa , Transdução de Sinais
16.
Anticancer Drugs ; 27(8): 711-22, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27333595

RESUMO

T-lymphocytes genetically engineered with the chimeric antigen receptor (CAR-T) have shown great therapeutic potential in cancer treatment. A variety of preclinical researches and clinical trials of CAR-T therapy have been carried out to lay the foundation for future clinical application. In these researches, several gene-transfer methods were used to deliver CARs or other genes into T-lymphocytes, equipping CAR-modified T cells with a property of recognizing and attacking antigen-expressing tumor cells in a major histocompatibility complex-independent manner. Here, we summarize the gene-transfer vectors commonly used in the generation of CAR-T cell, including retrovirus vectors, lentivirus vectors, the transposon/transposase system, the plasmid-based system, and the messenger RNA electroporation system. The following aspects were compared in parallel: efficiency of gene transfer, the integration methods in the modified T cells, foreground of scale-up production, and application and development in clinical trials. These aspects should be taken into account to generate the optimal CAR-gene vector that may be suitable for future clinical application.


Assuntos
Vetores Genéticos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/fisiologia , Transdução Genética/métodos , Transfecção/métodos , Animais , Ensaios Clínicos como Assunto , Elementos de DNA Transponíveis , Eletroporação/métodos , Humanos , Imunoterapia/métodos , Receptores de Antígenos de Linfócitos T/metabolismo
18.
Nucleic Acids Res ; 42(15): 9862-79, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25104021

RESUMO

Kaposi's sarcoma (KS) is an AIDS-defining cancer with aberrant neovascularization caused by KS-associated herpesvirus (KSHV). Although the interaction between HIV-1 and KSHV plays a pivotal role in promoting the aggressive manifestations of KS, the pathogenesis underlying AIDS-KS remains largely unknown. Here we examined HIV-1 Nef protein promotion of KSHV oncoprotein K1-induced angiogenesis. We showed that both internalized and ectopic expression of Nef in endothelial cells synergized with K1 to facilitate vascular tube formation and cell proliferation, and enhance angiogenesis in a chicken CAM model. In vivo experiments further indicated that Nef accelerated K1-induced angiogenesis and tumorigenesis in athymic nu/nu mice. Mechanistic studies revealed that Nef and K1 synergistically activated PI3K/AKT/mTOR signaling by downregulating PTEN. Furthermore, Nef and K1 induced cellular miR-718, which inhibited PTEN expression by directly targeting a seed sequence in the 3' UTR of its mRNA. Inhibition of miR-718 expression increased PTEN synthesis and suppressed the synergistic effect of Nef- and K1-induced angiogenesis and tumorigenesis. These results indicate that, by targeting PTEN, miR-718 mediates Nef- and K1-induced angiogenesis via activation of AKT/mTOR signaling. Our results demonstrate an essential role of miR-718/AKT/mTOR axis in AIDS-KS and thus may represent an attractive therapeutic target.


Assuntos
MicroRNAs/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Proteínas Virais/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Animais , Carcinogênese/metabolismo , Linhagem Celular , Proliferação de Células , Embrião de Galinha , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/biossíntese , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
J Virol ; 88(9): 4987-5000, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24554664

RESUMO

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) is causally linked to several AIDS-related malignancies, including Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease. The interaction of human immunodeficiency virus type 1 (HIV-1) and KSHV has a central role in promoting the aggressive manifestations of AIDS-KS. We have previously shown that negative factor (Nef), a secreted HIV-1 protein, synergizes with KSHV viral interleukin-6 (vIL-6) to promote angiogenesis and tumorigenesis by activating the AKT pathway (X. Zhu, et al., Oncogene, 22 April 2013, http://dx.doi.org/10.1038/onc.2013.136). Here, we further demonstrated the role of soluble and ectopic Nef in the regulation of KSHV latency. We found that both soluble Nef protein and ectopic expression of Nef by transfection suppressed the expression of KSHV viral lytic mRNA transcripts and proteins and the production of infectious viral particles. MicroRNA (miRNA) microarray analysis identified a number of Nef-regulated miRNAs. Bioinformatics and luciferase reporter analyses showed that one of the Nef-upregulated miRNAs, cellular miRNA 1258 (hsa-miR-1258), directly targeted a seed sequence in the 3' untranslated region (UTR) of the mRNA encoding the major lytic switch protein (RTA), which controls KSHV reactivation from latency. Ectopic expression of hsa-miR-1258 impaired RTA synthesis and enhanced Nef-mediated inhibition of KSHV replication, whereas repression of hsa-miR-1258 has the opposite effect. Mutation of the seed sequence in the RTA 3'UTR abolished downregulation of RTA by hsa-miR-1258. Collectively, these novel findings demonstrate that, by regulating cellular miRNA, Nef may inhibit KSHV replication to promote viral latency and contribute to the pathogenesis of AIDS-related malignancies. IMPORTANCE: This study found that Nef, a secreted HIV-1 protein, suppressed KSHV lytic replication to promote KSHV latency. Mechanistic studies indicated that a Nef-upregulated cellular miRNA, hsa-miR-1258, inhibits KSHV replication by directly targeting a seed sequence in the KSHV RTA 3'UTR. These results illustrate that, in addition to viral miRNAs, cellular miRNAs also play an important role in regulating the life cycle of KSHV. Overall, this is the first study to report the involvement of Nef in KSHV latency, implying its likely important role in the pathogenesis of AIDS-related malignancies.


Assuntos
HIV-1/fisiologia , Herpesvirus Humano 8/fisiologia , MicroRNAs/metabolismo , Interferência Viral , Latência Viral , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Perfilação da Expressão Gênica , Humanos , Análise em Microsséries
20.
Colloids Surf B Biointerfaces ; 240: 113991, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815311

RESUMO

Diabetes mellitus is a chronic metabolic disease with prolonged low-grade inflammation and impaired cellular function, leading to poor wound healing. The treatment of diabetic wounds remains challenging due to the complex wound microenvironment. In view of the prominence of fish scales in traditional Chinese medicine and their wide application in modern medicine, we isolated the intercellular components in the scales of sea bass, obtained a natural composite hydrogel, fish scales gel (FSG), and applied it to diabetic chronic wounds. FSG was rich in collagen-like proteins, and possessed low-temperature gelation properties. In vitro, FSG was biocompatible and promoted fibroblast proliferation by approximately 40 %, endothelial cell migration by approximately 20 % and activated the M1 macrophages. In addition, FSG restored the function of fibroblasts and vascular endothelial cells damaged by high glucose. Importantly, FSG normalized the acute inflammatory response to impaired macrophages in a high-glucose microenvironment. Transcriptome analysis implies that this mechanism may involve enhanced cell signaling and cellular communication, improved sensitivity to cytokines, and activation of the TNF signaling pathway. Animal experiments confirmed that FSG significantly improved wound closure by approximately 15 % in diabetic rats, showing similar effects to acute wounds. In conclusion, the regulation of multiple cellular functions by FSG, especially the counterintuitive ability to induce acute inflammation, promoted diabetic wound healing and provides a novel therapeutic strategy for wound repair in diabetic patients.


Assuntos
Diabetes Mellitus Experimental , Hidrogéis , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Ratos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Escamas de Animais/química , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Masculino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Movimento Celular/efeitos dos fármacos , Camundongos , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA