Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(6): 3217-3248, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38237033

RESUMO

Hydrogel, as a unique scaffold material, features a three-dimensional network system that provides conducive conditions for the growth of cells and tissues in bone tissue engineering (BTE). In recent years, it has been discovered that metal ion-containing hybridized hydrogels, synthesized with metal particles as the foundation, exhibit excellent physicochemical properties, osteoinductivity, and osteogenic potential. They offer a wide range of research prospects in the field of BTE. This review provides an overview of the current state and recent advancements in research concerning metal ion-containing hydrogels in the field of BTE. Within materials science, it covers topics such as the binding mechanisms of metal ions within hydrogel networks, the types and fabrication methods of various metal ion-containing hydrogels, and the influence of metal ions on the properties of hydrogels. In the context of BTE, the review delves into the osteogenic mechanisms of various metal ions, the applications of metal ion-containing hydrogels in BTE, and relevant experimental studies in vitro and in vivo. Furthermore, future improvements in bone repair can be anticipated through advancements in bone bionics, exploring interactions between metal ions and the development of a wider range of metal ions and hydrogel types.


Assuntos
Osso e Ossos , Hidrogéis , Metais , Engenharia Tecidual , Engenharia Tecidual/métodos , Hidrogéis/química , Hidrogéis/síntese química , Hidrogéis/farmacologia , Humanos , Osso e Ossos/efeitos dos fármacos , Metais/química , Animais , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Íons/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia
2.
Front Genet ; 15: 1382270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974387

RESUMO

Introduction: Immune cells are dynamic in the inflammatory environment and play a key role in eradicating periodontal pathogens, modulating immune responses, and instigating tissue destruction. Identifying specific immune cell phenotypes associated with periodontitis risk is essential for targeted immunotherapeutic interventions. However, the role of certain specific immune cell phenotypes in the development of periodontitis is unknown. Mendelian randomization offers a novel approach to reveal causality and address potential confounding factors through genetic instruments. Methods: This two-sample Mendelian randomization study assessed the causal relationship between 731 immune cell phenotypes and periodontitis using the inverse variance weighting method with the GWAS catalog genetic database. Methodological robustness was ensured through Cochran's Q test, MR-Egger regression, MR-PRESSO, and Leave-One-Out analysis. Results: 14 immune cell phenotypes showed potential positive causal associations with periodontitis risk (p < 0.05), suggesting an increased risk, while 11 immune cell phenotypes exhibited potential negative causal associations (p < 0.05), indicating a reduced risk. No significant heterogeneity or pleiotropy was observed. Conclusion: This study underscores certain immune cell types as potential periodontitis risk biomarkers, laying a theoretical foundation for future individualized treatment and precision medicine development.

3.
Front Immunol ; 15: 1419363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933282

RESUMO

Background: Targeted therapy for Sjögren's syndrome (SS) has become an important focus for clinicians. Multi-omics-wide Mendelian randomization (MR) analyses have provided new ideas for identifying potential drug targets. Methods: We conducted summary-data-based Mendelian randomization (SMR) analysis to evaluate therapeutic targets associated with SS by integrating DNA methylation, gene expression and protein quantitative trait loci (mQTL, eQTL, and pQTL, respectively). Genetic associations with SS were derived from the FinnGen study (discovery) and the GWAS catalog (replication). Colocalization analyses were employed to determine whether two potentially relevant phenotypes share the same genetic factors in a given region. Moreover, to delve deeper into potential regulation among DNA methylation, gene expression, and protein abundance, we conducted MR analysis to explore the causal relationship between candidate gene methylation and expression, as well as between gene expression and protein abundance. Drug prediction and molecular docking were further employed to validate the pharmacological activity of the candidate drug targets. Results: Upon integrating the multi-omics data, we identified three genes associated with SS risk: TNFAIP3, BTN3A1, and PLAU. The methylation of cg22068371 in BTN3A1 was positively associated with protein levels, consistent with the negative effect of cg22068371 methylation on the risk of SS. Additionally, positive correlations were observed between the gene methylation of PLAU (cg04939496) and expression, as well as between expression and protein levels. This consistency elucidates the promotional effects of PLAU on SS risk at the DNA methylation, gene expression, and protein levels. At the protein level, genetically predicted TNFAIP3 (OR 2.47, 95% CI 1.56-3.92) was positively associated with SS risk, while BTN3A1 (OR 2.96E-03, 95% CI 2.63E-04-3.33E-02) was negatively associated with SS risk. Molecular docking showed stable binding for candidate drugs and target proteins. Conclusion: Our study reveals promising therapeutic targets for the treatment of SS, providing valuable insights into targeted therapy for SS. However, further validation through future experiments is warranted.


Assuntos
Metilação de DNA , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Simulação de Acoplamento Molecular , Locos de Características Quantitativas , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/metabolismo , Metilação de DNA/efeitos dos fármacos , Predisposição Genética para Doença , Terapia de Alvo Molecular , Polimorfismo de Nucleotídeo Único , Multiômica
4.
Pharmaceutics ; 15(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37514099

RESUMO

Aloe vera is a kind of herb rich in polysaccharides. Acemannan (AC) is considered to be a natural polysaccharide with good biodegradability and biocompatibility extracted from Aloe vera and has a wide range of applications in the biomedical field due to excellent immunomodulatory, antiviral, antitumor, and tissue regeneration effects. In recent years, clinical case reports on the application of AC as a novel biomedical material in tissue regenerative medicine have emerged; it is mainly used in bone tissue engineering, pulp-dentin complex regeneration engineering, and soft tissue repair, among other operations. In addition, multiple studies have proved that the new composite products formed by the combination of AC and other compounds have excellent biological and physical properties and have broader research prospects. This paper introduces the preparation process, surface structure, and application forms of AC; summarizes the influence of acetyl functional group content in AC on its functions; and provides a detailed review of the functional properties, laboratory studies, clinical cutting-edge applications, and combined applications of AC. Finally, the current application status of AC from basic research to clinical treatment is analyzed and its prospects are discussed.

5.
Front Bioeng Biotechnol ; 11: 1127949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824354

RESUMO

Osteoarthritis is a chronic degenerative joint disease that exerts significant impacts on personal life quality, and cartilage tissue engineering is a practical treatment in clinical. Various growth factors are involved in cartilage regeneration and play important roles therein, which is the focus of current cartilage repair strategy. To compensate for the purification difficulty, high cost, poor metabolic stability, and circulating dilution of natural growth factors, the concept of functional motifs (also known as mimetic peptides) from original growth factor was introduced in recent studies. Here, we reviewed the selection mechanisms, biological functions, carrier scaffolds, and modification methods of growth factor-related functional motifs, and evaluated the repair performance in cartilage tissue engineering. Finally, the prospects of functional motifs in researches and clinical application were discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA