Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227437

RESUMO

Capsicum chlorosis virus (CaCV; family Tospoviridae, genus Orthotospovirus) was first reported to infect capsicum (Capsicum annuum) and tomato (Solanum lycopersicum) in Australia in 2002 (McMichael et al., 2002). Subsequently, its infection was detected in different plants including waxflower (Hoya calycina Schlecter) in the United States (Melzer et al. 2014), peanut (Arachis hypogaea) in India (Vijayalakshmi et al. 2016), and spider lily (Hymenocallis americana) (Huang et al. 2017), Chilli pepper (Capsicum annuum) (Zheng et al. 2020), and Feiji cao (Chromolaena odorata) (Chen et al. 2022) in China. Ageratum conyzoides L. (commonly known as goat weed, family Asteraceae) is a natural weed in crop fields distributed in subtropical and tropical areas and a reservoir host of numerous plant pathogens (She et al. 2013). In April 2022, we observed that 90% of plants of A. conyzoides in maize fields in Sanya, Hainan province, China, exhibited typical virus-like symptoms of vein yellowing, leaf chlorosis, and distortion (Fig. S1 A-C). Total RNA was extracted from one symptomatic leaf of A. conyzoides. Small RNA libraries were constructed using the small RNA Sample Pre Kit (Illumina, San Diego, USA) for sequencing with an Illumina Novaseq 6000 platform (Biomarker Technologies Corporation, Beijing, China). A total 15,848,189 clean reads were obtained after removing low-quality reads. Quality-controlled qualified reads were assembled into contigs using Velvet 1.0.5 software with a k-mer value of 17. One hundred contigs shared nucleotide identity ranging from 85.7% to 100% with the CaCV using BLASTn searches online (https://blast.ncbi.nlm.nih.gov/Blast.cgi?). Numerous contigs (45, 34, and 21) obtained in this study were mapped to the L, M, and S RNA segments of the CaCV-Hainan isolate (GenBank accession no. KX078565- KX078567) from spider lily (Hymenocallis americana) in Hainan province, China, respectively. The full-length of L, M, and S RNA segments of CaCV-AC were determined to be 8,913, 4,841, and 3,629 bp, respectively (GenBank accession no. OQ597167- OQ597169). Furthermore, five symptomatic leaf samples were tested to be positive for CaCV using a CaCV enzyme-linked immunosorbent assay (ELISA) kit (MEIMIAN, Jiangsu, China) (Fig. S1-D). Total RNA from these leaves was amplified by RT-PCR with two sets of primer pairs. Primers CaCV-F (5'-ACTTTCCATCAACCTCTGT-3') and CaCV-R (5'-GTTATGGCCATATTTCCCT-3') were used for the amplification of 828 bp fragment from nucleocapsid protein (NP) on CaCV S RNA. While another, primers gL3637 (5'-CCTTTAACAGTDGAAACAT-3') and gL4435c (5'-CATDGCRCAAGARTGRTARACAGA-3') were used for the amplification of 816 bp fragment from RNA-dependent RNA polymerase (RdRP) on CaCV L RNA (Fig. S1-E and -F) (Basavaraj et al. 2020). These amplicons were cloned into the pCE2 TA/Blunt-Zero vector (Vazyme, Nanjing, China) and three independent positive colonies of Escherichia coli DH5α carrying each viral amplicon were sequenced. These sequences were deposited in the GenBank database under accession nos. OP616700-OP616709. Pairwise sequence comparison revealed that nucleotide sequences of NP and RdRP genes of the five CaCV isolates shared 99.5% (812 bp out of 828 bp) and 99.4% (799 bp out of 816 bp) nucleotide identities, respectively. They showed 86.2-99.2% and 86.5-99.1% nucleotide identities with corresponding nucleotide sequences of other CaCV isolates derived from GenBank database, respectively. The highest nucleotide sequence identity (99%) of the CaCV isolates obtained in the study was observed with the CaCV-Hainan isolate. Phylogenetic analysis based on NP amino acid demonstrated that six CaCV isolates (this study = 5 and NCBI database = 1) clustered into one distinct clade (Fig. S2). Our data confirmed for the first time the presence of CaCV naturally infecting A. conyzoides plant in China, which enriches information on the host range and will be helpful for disease management.

2.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446023

RESUMO

Heat stress is an increasingly significant abiotic stress factor affecting crop yield and quality. This study aims to uncover the regulatory mechanism of sweet corn response to heat stress by integrating transcriptome and metabolome analyses of seedlings exposed to normal (25 °C) or high temperature (42 °C). The transcriptome results revealed numerous pathways affected by heat stress, especially those related to phenylpropanoid processes and photosynthesis, with 102 and 107 differentially expressed genes (DEGs) identified, respectively, and mostly down-regulated in expression. The metabolome results showed that 12 or 24 h of heat stress significantly affected the abundance of metabolites, with 61 metabolites detected after 12 h and 111 after 24 h, of which 42 metabolites were detected at both time points, including various alkaloids and flavonoids. Scopoletin-7-o-glucoside (scopolin), 3-indolepropionic acid, acetryptine, 5,7-dihydroxy-3',4',5'-trimethoxyflavone, and 5,6,7,4'-tetramethoxyflavanone expression levels were mostly up-regulated. A regulatory network was built by analyzing the correlations between gene modules and metabolites, and four hub genes in sweet corn seedlings under heat stress were identified: RNA-dependent RNA polymerase 2 (RDR2), UDP-glucosyltransferase 73C5 (UGT73C5), LOC103633555, and CTC-interacting domain 7 (CID7). These results provide a foundation for improving sweet corn development through biological intervention or genome-level modulation.


Assuntos
Transcriptoma , Zea mays , Zea mays/metabolismo , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Metaboloma , Perfilação da Expressão Gênica/métodos
3.
Plant Dis ; 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350730

RESUMO

Tabernaemontana bufalina Lour. is extensively cultivated as an ornamental plant in Hainan, Guangdong, and other regions of southern China. In January 2020, we observed a rust disease on T. bufalina leaves in Sanya (18.15。N and 109.30。E) Hainan, China, and the rust occurred all year-round. In the early stage of rust, yellow chlorotic spots appeared, and then uredinia on the abaxial leaf surface became visible. Uredinia (approximately 200-700 µm in diameter) were mostly yellowish-brown in color, solitary, and irregularly scattered. In the late stage of the disease, spots were connected into lesions, and eventually, the whole leaf became severely chlorotic. Urediniospores were light brown, subglobose, measured 25-30 µm × 20-25 µm. They had two pores and were echinulate with spines spaced 2-5 µm. The teliospores were naked, scattered, or aggregated on severely infected leaves. They were two-celled, measured 33-40 µm × 25-30 µm, elliptic, dark brown, and covered with tiny spines. The teliospores had a colorless pedicel at one end which was approximately 28-34 µm long and enlarged at the lower part. The morphological characteristics of the spores were consistent with the descriptions of Puccinia engleriana Henn. (Hennings 1905). In China, P. engleriana was first identified on the leaves of Tabernaemontana divaricata (L.) in Yunnan province, and recorded as new to China in 2012 (Zhuang 2012). Untill now, no leaf rust caused by P. engleriana has been reported in Hainan. Urediniospores were collected and DNA was extracted using a Quick-DNA extraction Kit (TIANGEN Biotech, Beijing, China). The nuclear large subunit (28S) region of the ribosomal DNA repeat was amplified with primers Rust28SF (Aime et al. 2018) and LR5 (Vilgalys and Hester 1990) following the protocol of Aime and McTaggart (2021). The length of the large subunit sequence was 1,010 bp. When searched the GenBank database, the sequence showed 97.07% homology to the large subunit ribosomal RNA gene (Sequence ID: MW147048.1) of P. engleriana, and 92.5% similarity with 18S ribosomal RNA gene (Sequence ID: KM249855.1) of P. hemerocallidis. This result was consistent with the morphological identification. As for the 3% difference in large subunit ribosomal RNA gene, it was speculated that it may be related to the differences of geographical distribution and host plants, as the reference P. engleriana was obtained from Tabernaemontana orientalis in Australia (Aime and McTaggart 2021). The large subunit sequence was submitted into the GenBank database, with accession No. MZ314895. T. bufalina cutting seedlings with 4 available leaves were used in the Koch's postulate test. These seedlings were planted in a greenhouse with a 14 h/10 h light/dark photoperiod at 28°C and 65% humidity. The urediniospores suspension (5107/ml in 0.05% Tween 20 solution) was sprayed on 6 healthy seedlings and other 6 seedlings were sprayed with 0.05% Tween 20 solution as a negative control. Two weeks after inoculation, leaf chlorosis and yellowish uredinia were observed on the inoculated seedlings, whereas the non-inoculated seedlings stayed healthy. To our knowledge, this is the first report of P. engleriana causing leaf rust on T. bufalina in Hainan province. This report will provide the reference for future investigation of T. bufalina leaf rust, and for further improvement on the knowledge of the geographical distribution of P. engleriana in China.

4.
BMC Microbiol ; 20(1): 55, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143563

RESUMO

BACKGROUND: Major latex proteins (MLPs) belong to the MLP subfamily in Bet v 1 protein family and respond to both biotic and abiotic stresses, which play critical roles in plant disease resistance. As the type species of widely distributed and economically devastating Potyvirus, Potato virus Y (PVY) is one of the major constraints to important crop plants including tobacco (Nicotiana benthamiana) worldwide. Despite the great losses owing to PVY infection in tobacco, there is no previous study investigating the potential role of MLPs in developing resistance to viral infection. RESULTS: In this study, for the first time we have identified and functionally analyzed the MLP-like protein 28 from N. benthamiana, denoted as NbMLP28 and investigated its role in conferring resistance to N. benthamiana against PVY infection. NbMLP28 was localized to the plasmalemma and nucleus, with the highest level in the root. NbMLP28 gene was hypothesized to be triggered by PVY infection and was highly expressed in jasmonic acid (JA) signaling pathway. Further validation was achieved through silencing of NbMLP28 through virus-induced gene silencing (VIGS) that rendered N. benthamiana plants more vulnerable to PVY infection, contrary to overexpression that enhanced resistance. CONCLUSIONS: Taken together, this is the first study describing the role of NbMLP28 in tobacco against PVY infection and provide a pivotal point towards obtaining pathogen-resistant tobacco varieties through constructing new candidate genes of MLP subfamily.


Assuntos
Resistência à Doença , Nicotiana/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Oxilipinas/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Conformação Proteica , Transdução de Sinais , Distribuição Tecidual , Nicotiana/genética , Nicotiana/virologia
5.
New Phytol ; 220(2): 539-552, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30022473

RESUMO

Chloride channel (CLC) proteins are important anion transporters conserved in organisms ranging from bacteria and yeast to plants and animals. According to sequence comparison, some plant CLCs are predicted to function as Cl- /H+ antiporters, but not Cl- channels. However, no direct evidence was provided to verify the role of these plant CLCs in regulating the pH of the intracellular compartment. We identified tobacco CLC-Nt1 interacting with the Potato virus Y (PVY) 6K2 protein. To investigate its physiological function, homologous genes of CLC-Nt1 in Nicotiana benthamiana were knocked out using the CRISPR/Cas9 system. Complementation experiments were subsequently performed by expression of wild-type or point-mutated CLC-Nt1 in knockout mutants. The data presented herein demonstrate that CLC-Nt1 is localized at endoplasmic reticulum (ER). Using a pH-sensitive fluorescent protein (pHluorin), we found that loss of CLC-Nt1 function resulted in a decreased ER luminal pH. Secreted GFP (secGFP) was retained mostly in ER in knockout mutants, indicating that CLC-Nt1 is also involved in protein secretion. PVY infection induced a rise in ER luminal pH, which was dependent on functional CLC-Nt1. By contrast, loss of CLC-Nt1 function inhibited PVY intracellular replication and systemic infection. We propose that PVY alters ER luminal pH for infection in a CLC-Nt1-dependent manner.


Assuntos
Canais de Cloreto/metabolismo , Retículo Endoplasmático/metabolismo , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Álcalis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Filogenia , Doenças das Plantas/virologia , Ligação Proteica , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Replicação Viral
6.
J Agric Food Chem ; 67(11): 3168-3178, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30799619

RESUMO

In this study we report a secretory protein that was purified from Serratia marcescens strain S3 isolated from soil from the tobacco rhizosphere. Subsequent mass spectrometry and annotation characterized the protein as secretory alkaline metalloprotease (SAMP). SAMP plays a crucial role in inhibiting Tobacco mosaic virus (TMV). Transmission electron microscopy (TEM), dynamic light scattering (DLS), confocal microscopy, and microscale thermophoresis (MST) were employed to investigate the anti-TMV mechanism of SAMP. Our results demonstrated that SAMP, as a hydrolytic metal protease, combined and hydrolyzed TMV coat proteins to destroy the virus particles. This study is the first to investigate the antiviral effects of a S. marcescens metalloprotease, and our finding suggests that S. marcescens-S3 may be agronomically useful as a disease-controlling factor active against Tobacco mosaic virus.


Assuntos
Antivirais/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Metaloproteases/farmacologia , Serratia marcescens/enzimologia , Antivirais/isolamento & purificação , Antivirais/metabolismo , Proteínas de Bactérias/isolamento & purificação , Metaloproteases/isolamento & purificação , Metaloproteases/metabolismo , Serratia marcescens/química , Serratia marcescens/genética , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento
7.
PLoS One ; 12(6): e0179433, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28614384

RESUMO

The piercing fruit moth Oraesia emarginata is an economically significant pest; however, our understanding of its olfactory mechanisms in infestation is limited. The present study conducted antennal transcriptome analysis of olfactory genes using real-time quantitative reverse transcription PCR analysis (RT-qPCR). We identified a total of 104 candidate chemosensory genes from several gene families, including 35 olfactory receptors (ORs), 41 odorant-binding proteins, 20 chemosensory proteins, 6 ionotropic receptors, and 2 sensory neuron membrane proteins. Seven candidate pheromone receptors (PRs) and 3 candidate pheromone-binding proteins (PBPs) for sex pheromone recognition were found. OemaOR29 and OemaPBP1 had the highest fragments per kb per million fragments (FPKM) values in all ORs and OBPs, respectively. Eighteen olfactory genes were upregulated in females, including 5 candidate PRs, and 20 olfactory genes were upregulated in males, including 2 candidate PRs (OemaOR29 and 4) and 2 PBPs (OemaPBP1 and 3). These genes may have roles in mediating sex-specific behaviors. Most candidate olfactory genes of sex pheromone recognition (except OemaOR29 and OemaPBP3) in O. emarginata were not clustered with those of studied noctuid species (type I pheromone). In addition, OemaOR29 was belonged to cluster PRIII, which comprise proteins that recognize type II pheromones instead of type I pheromones. The structure and function of olfactory genes that encode sex pheromones in O. emarginata might thus differ from those of other studied noctuids. The findings of the present study may help explain the molecular mechanism underlying olfaction and the evolution of olfactory genes encoding sex pheromones in O. emarginata.


Assuntos
Antenas de Artrópodes/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Insetos/genética , Mariposas/genética , Sequência de Aminoácidos , Animais , Feminino , Ontologia Genética , Proteínas de Insetos/classificação , Masculino , Córtex Olfatório/metabolismo , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genética , Receptores de Feromônios/classificação , Receptores de Feromônios/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Olfato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA