Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
Cell ; 186(15): 3182-3195.e14, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379837

RESUMO

The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sciences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on predicted structure similarities. We selected deaminase proteins to analyze and identified many previously unknown properties. We were surprised to find that most proteins in the DddA-like clade were not double-stranded DNA deaminases. We engineered the smallest single-strand-specific cytidine deaminase, enabling efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly, we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inaccessible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand the utility of base editors for therapeutic and agricultural applications.


Assuntos
Edição de Genes , Proteínas , Proteínas/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA , Sistemas CRISPR-Cas , Citosina/metabolismo
2.
Nature ; 602(7897): 455-460, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140403

RESUMO

Disruption of susceptibility (S) genes in crops is an attractive breeding strategy for conferring disease resistance1,2. However, S genes are implicated in many essential biological functions and deletion of these genes typically results in undesired pleiotropic effects1. Loss-of-function mutations in one such S gene, Mildew resistance locus O (MLO), confers durable and broad-spectrum resistance to powdery mildew in various plant species2,3. However, mlo-associated resistance is also accompanied by growth penalties and yield losses3,4, thereby limiting its widespread use in agriculture. Here we describe Tamlo-R32, a mutant with a 304-kilobase pair targeted deletion in the MLO-B1 locus of wheat that retains crop growth and yields while conferring robust powdery mildew resistance. We show that this deletion results in an altered local chromatin landscape, leading to the ectopic activation of Tonoplast monosaccharide transporter 3 (TaTMT3B), and that this activation alleviates growth and yield penalties associated with MLO disruption. Notably, the function of TMT3 is conserved in other plant species such as Arabidopsis thaliana. Moreover, precision genome editing facilitates the rapid introduction of this mlo resistance allele (Tamlo-R32) into elite wheat varieties. This work demonstrates the ability to stack genetic changes to rescue growth defects caused by recessive alleles, which is critical for developing high-yielding crop varieties with robust and durable disease resistance.


Assuntos
Ascomicetos , Resistência à Doença , Edição de Genes , Genoma de Planta , Triticum , Arabidopsis/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Resistência à Doença/genética , Mutação , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
3.
Nat Immunol ; 16(2): 161-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25531830

RESUMO

Innate lymphoid cells (ILCs) are lymphocyte-like cells that lack T cell or B cell antigen receptors and mediate protective and repair functions through cytokine secretion. Among these, type 2 ILCs (ILC2 cells) are able to produce type 2 cytokines. We report the existence of an inflammatory ILC2 (iILC2) population responsive to interleukin 25 (IL-25) that complemented IL-33-responsive natural ILC2 (nILC2) cells. iILC2 cells developed into nILC2-like cells in vitro and in vivo and contributed to the expulsion of Nippostrongylus brasiliensis. They also acquired IL-17-producing ability and provided partial protection against Candida albicans. We propose that iILC2 cells are transient progenitors of ILCs mobilized by inflammation and infection that develop into nILC2-like cells or ILC3-like cells and contribute to immunity to both helminths and fungi.


Assuntos
Interleucina-17/metabolismo , Linfócitos/imunologia , Receptores Imunológicos/metabolismo , Animais , Animais Geneticamente Modificados , Candida albicans/imunologia , Candidíase/imunologia , Linhagem da Célula , Deleção de Genes , Inflamação/imunologia , Lectinas Tipo C , Leucócitos/imunologia , Pulmão/imunologia , Pulmão/patologia , Linfócitos/citologia , Camundongos , Nippostrongylus/imunologia , Receptores Imunológicos/genética , Receptores de Interleucina-7/metabolismo , Infecções por Strongylida/imunologia
4.
PLoS Biol ; 22(5): e3002621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805565

RESUMO

Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.


Assuntos
Adenocarcinoma de Pulmão , Colesterol , Progressão da Doença , Fator 3-gama Nuclear de Hepatócito , Neoplasias Pulmonares , Colesterol/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular
5.
Antimicrob Agents Chemother ; 68(1): e0077823, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38095426

RESUMO

Vulvovaginal candidiasis (VVC) is a common condition among women. Fluconazole remains the dominant treatment option for VVC. Oteseconazole is a highly selective inhibitor of fungal CYP51. This randomized, double-blinded, phase 3 trial was conducted to evaluate the efficacy and safety of oteseconazole compared with fluconazole in treating severe VVC. Female subjects presenting with vulvovaginal signs and symptoms score of ≥7 and positive Candida infection determined by potassium hydroxide test or Gram staining were randomly assigned to receive oteseconazole (600 mg on D1 and 450 mg on D2) or fluconazole (150 mg on D1 and D4) in a 1:1 ratio. The primary endpoint was the proportion of subjects achieving therapeutic cure [defined as achieving both clinical cure (absence of signs and symptoms of VVC) and mycological cure (negative culture of Candida species)] at D28. A total of 322 subjects were randomized and 321 subjects were treated. At D28, a statistically significantly higher proportion of subjects achieved therapeutic cure in the oteseconazole group than in the fluconazole group (66.88% vs 45.91%; P = 0.0002). Oteseconazole treatment resulted in an increased proportion of subjects achieving mycological cure (82.50% vs 59.12%; P < 0.0001) and clinical cure (71.25% vs 55.97%; P = 0.0046) compared with fluconazole. The incidence of treatment-emergent adverse events was similar between the two groups. No subjects discontinued study treatment or withdrew study due to adverse events. Oteseconazole showed statistically significant and clinically meaningful superiority over fluconazole for the treatment of severe VVC and was generally tolerated.


Assuntos
Candidíase Vulvovaginal , Fluconazol , Feminino , Humanos , Fluconazol/farmacologia , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Antifúngicos/efeitos adversos , Candida , Administração Oral , Candida albicans
6.
Infection ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568411

RESUMO

PURPOSE: To evaluate the efficacy and safety of oral ibrexafungerp (HS-10366) versus placebo in Chinese patients with vulvovaginal candidiasis (VVC). METHODS: A double-blind, placebo-controlled, randomized, multicenter phase III study was conducted in symptomatic VVC patients. Patients received (2:1) twice-daily oral ibrexafungerp 300 mg or matching placebo for 1 day. The primary endpoint was clinical cure (vulvovaginal signs and symptoms [VSS] score = 0) at test-of-cure (TOC) on day 11 ± 3. The secondary endpoints included mycological eradication, overall response, and clinical improvement (VSS score ≤ 1) at TOC, and vulvovaginal symptom resolution at follow-up on day 25 ± 4. RESULTS: In total, 360 patients were included in the modified intention-to-treat set (defined as positive Candida cultured and receiving at least one study drug; 239 for ibrexafungerp, 121 for placebo). Compared with placebo, patients receiving ibrexafungerp had a significantly higher proportion of clinical cure (51.0% vs. 25.6%), mycological eradication (55.6% vs. 18.2%), overall response (33.9%, vs. 8.3%) at TOC and complete symptom resolution (74.5% vs. 39.7%, all P < 0.001) at follow-up. Subgroup analysis of clinical cure indicated that patients with C. albicans could benefit from ibrexafungerp over placebo. A similar benefit trend was also observed in those with non-albicans Candida by post-hoc analysis. Further analyses revealed similar efficacy of ibrexafungerp between patients with fluconazole non-susceptible C. albicans and fluconazole susceptible C. albicans regarding clinical cure and mycological eradication. Ibrexafungerp was generally well tolerated. Adverse events were primarily gastrointestinal and were mainly mild in severity. CONCLUSIONS: As a first-in-class antifungal agent, ibrexafungerp demonstrated promising efficacy and favorable safety for VVC treatment in Chinese patients. CHINADRUGTRIALS.ORG. CN REGISTRY NUMBER: CTR20220918.

7.
Nicotine Tob Res ; 26(4): 474-483, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-37535700

RESUMO

INTRODUCTION: Electronic cigarettes (E-cigs) are in a controversial state. Although E-cig aerosol generally contains fewer harmful substances than smoke from burned traditional cigarettes, aerosol along with other compounds of the E-cigs may also affect lung functions and promote the development of lung-related diseases. We investigated the effects of E-cig on the pulmonary functions of male C57BL/6 mice and reveal the potential underlying mechanisms. METHODS: A total of 60 male C57BL/6 mice were randomly divided into four groups. They were exposed to fresh-air, traditional cigarette smoke, E-cig vapor with 12 mg/mL of nicotine, and E-cig with no nicotine for 8 weeks. Lung functions were evaluated by using quantitative analysis of the whole body plethysmograph, FlexiVent system, lung tissue histological and morphometric analysis, and RT-PCR analysis of mRNA expression of inflammation-related genes. In addition, the effects of nicotine and acrolein on the survival rate and DNA damage were investigated using cultured human alveolar basal epithelial cells. RESULTS: Exposure to E-cig vapor led to significant changes in lung functions and structures including the rupture of the alveolar cavity and enlarged alveolar space. The pathological changes were also accompanied by increased expression of interleukin-6 and tumor necrosis factor-α. CONCLUSIONS: The findings of the present study indicate that the safety of E-cig should be further evaluated. IMPLICATIONS: Some people currently believe that using nicotine-free E-cigs is a safe way to smoke. However, our research shows that E-cigs can cause lung damage regardless of whether they contain nicotine.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Camundongos , Animais , Masculino , Humanos , Nicotina/efeitos adversos , Nicotina/metabolismo , Camundongos Endogâmicos C57BL , Pulmão , Aerossóis/farmacologia
8.
BMC Psychiatry ; 24(1): 207, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491411

RESUMO

BACKGROUND: The long-term effectiveness of cognitive behavioural therapy (CBT) in medicated attention-deficit/hyperactivity disorder (ADHD) adults with residual symptoms needs to be verified across multiple dimensions, especially with respect to maladaptive cognitions and psychological quality of life (QoL). An exploration of the mechanisms underlying the additive benefits of CBT on QoL in clinical samples may be helpful for a better understanding of the CBT conceptual model and how CBT works in medicated ADHD. METHODS: We conducted a secondary analysis of a randomised controlled trial including 98 medicated ADHD adults with residual symptoms who were randomly allocated to the CBT combined with medication (CBT + M) group or the medication (M)-only group. Outcomes included ADHD-core symptoms (ADHD Rating Scale), depression symptoms (Self-rating Depression Scale), maladaptive cognitions (Automatic Thoughts Questionnaire and Dysfunctional Attitude Scale), and psychological QoL (World Health Organization Quality of Life-Brief Version-psychological domain). Mixed linear models (MLMs) were used to analyse the long-term effectiveness at one-year follow-up, and structural equation modeling (SEM) was performed to explore the potential mechanisms of CBT on psychological QoL. RESULTS: ADHD patients in the CBT + M group outperformed the M-only group in reduction of ADHD core symptoms (d = 0.491), depression symptoms (d = 0.570), a trend of reduction of maladaptive cognitions (d = 0.387 and 0.395, respectively), and improvement of psychological QoL (d = - 0.433). The changes in above dimensions correlated with each other (r = 0.201 ~ 0.636). The influence of CBT on QoL was mediated through the following four pathways: 1) changes in ADHD core symptoms; 2) changes in depressive symptoms; 3) changes in depressive symptoms and then maladaptive cognitions; and 4) changes firstly in depressive symptoms, maladaptive cognitions, and then ADHD core symptoms. CONCLUSIONS: The long-term effectiveness of CBT in medicated ADHD adults with residual symptoms was further confirmed. The CBT conceptual model was verified in clinical samples, which would be helpful for a deeper understanding of how CBT works for a better psychological QoL outcome. TRIAL REGISTRATION: ChiCTR1900021705 (2019-03-05).


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Terapia Cognitivo-Comportamental , Adulto , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Qualidade de Vida , Seguimentos , Resultado do Tratamento , Terapia Cognitivo-Comportamental/métodos
9.
Plant Dis ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812364

RESUMO

Macadamia (Macadamia ternifolia Maiden and Betche) belongs to the Proteaceae family (Li et al. 2022). In the hilly areas of Guangxi (southern China), macadamia trees are an important source of revenue. The planting area in Guangxi has increased in recent years, exceeding 53,333 hectares by the end of 2022, but this increase is also associated with emergency of, macadamia diseases. Leaf blight symptoms were observed in 37/241 macadamia trees (15% incidence) in a plantation in Nanning, Guangxi province in China, during June, 2022. Disease severity on infected trees ranged from 5% to 60%. The disease developed from the tips or margins of leaves, causing the leaves to turn brown, and later gradually withered (Fig. 1 A). Ten leaves with lesions were collected from five macadamia trees (two leaves per tree. Thereafter, small segments (3 to 4 mm²) excised from the margins of ten lesions were surface sterilized in 75% ethanol for 30 s and 1% hypochlorite for 90 s and Page 1 of 6 2 rinsed in sterile water, before plating onto potato dextrose agar (PDA) medium. Plates were incubated under lighting during the daytime, and darkness at night-time for 5 days at 25℃. Twenty-two purified colonies were generated by subculturing hyphal tips, of which eight exhibited similar morphology and were further characterized. The colonies on PDA were gray with a white outer ring and flat lawn on the surface (Fig. 1 B). The pycnidia were superficial to semi-immersed on PDA, solitary to aggregated, globose to sub-globose, brown to black and oozed yellow mucilaginous masses (Fig.1 C). The α-conidia were unicellular, hyaline elliptical or fusiform, and measuring 4-8 × 1.9-4 µm (n=30) , whereas the ß-conidia were hyaline, long, straight or curved, measuring 20-23 × 0.9-2 µm (n=30) (Fig. 1 D-E). The morphological features were similar to Diaporthe hongkongensis (Dissanayake et al. 2015). The eight morphologically similar isolates were identified as D. hongkongensis using the internal transcribed spacer (ITS) region, but only one isolate, JG11, was selected for further molecular identification. Five target genes, including the ITS region, translation elongation factor 1 alpha (EF1-α), beta-tubulin genes (TUB2), calmodulin (CAL), and histone H3 (HIS) were amplified and sequenced using primers ITS1/ITS4, EF1-728F/EF1-986R, Bt2a/Bt2b, CAL-228F/CAL-737R, and CYLH3F/H3-1b, respectively (Carbone and Kohn 1999). The sequences were deposited in GenBank under accession numbers OQ932790 (ITS) and OR147955-58 for EF1-α, TUB, CAL and HIS genes, respectively. BLAST search of GenBank showed that ITS, EF1-α, TUB, CAL, and HIS sequences of JG11 were similar to Page 2 of 6 3 those of D. hongkongensis NR111848 (99.22% identity), KY433566 (99.72%), MW208603 (99.42%), MW221740 (99.80%), and MW221661 (99.79%), respectively. Phylogenetic analysis of concatenated sequences was performed with IQ-TREE software. JG11 was grouped in the same clade as other Diaporthe hongkongensis isolates (Fig. 2). Pathogenicity experiments were carried out on healthy macadamia trees in a greenhouse. Three macadamia trees were used as negative controls where five uninjured leaves per tree were sprayed with sterile distilled water. Uninjured five leaves per tree of three other macadamia trees were sprayed with conidia suspension of the isolate JG11 at a concentration of 1×106. Each treatment was repeated 3 times independently, with 5 leaves per tree (Liu et al. 2023; Havill et al. 2023; Zhang et al. 2022). Plastic bags were placed over all inoculated leaves. The average daily temperature and relative humidity in the greenhouse were 32°C and 65%, respectively. Two days later, browning appeared on the leaves inoculated with the spore suspension and expanded outward. After 5 days, all macadamia leaves inoculated with the fungal spores began to wither, while controls remained asymptomatic (Fig. 1 H-I). D. hongkongensis was consistently re-isolated and purified from inoculated leaves and the identity was confirmed by morphological identification and molecular analysis, completed Koch's postulates. D. hongkongensis has been reported on peach (Zhang et al. 2021), grapevine trunk (Dissanayake et al. 2015) and Cunninghamia lanceolata (Liao et al. 2022). To our knowledge, this is the first report of D. hongkongensis causing leaf blight on macadamia in China. These findings provide a foundation for future research on the epidemiology and control of this newly emerging disease of macadamia.

10.
J Wound Ostomy Continence Nurs ; 51(1): 74-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38215301

RESUMO

BACKGROUND: Peristomal abscess (PA) is an uncommon but challenging peristomal skin complication. The initial treatment of the PA usually includes incision and drainage of the abscess, resulting in a peristomal wound. The presence of the wound makes it difficult to maintain a seal between the ostomy skin barrier and the peristomal skin resulting in frequent removal and application of the skin barrier to prevent leakage and allow for daily wound care. CASE: Ms T was a 52-year-old woman with an ileostomy resulting from a prior left hemicolectomy for colon cancer who developed a PA. Treatment of the PA was implemented, along with a modified 2-piece skin barrier that allowed access to the peristomal wound for daily dressing changes while maintaining a seal around the ostomy. CONCLUSION: The modified 2-piece skin barrier technique proved a successful treatment for the management of the PA without frequent changes of the ostomy pouching system.


Assuntos
Estomia , Dermatopatias , Feminino , Humanos , Pessoa de Meia-Idade , Ileostomia/efeitos adversos , Ileostomia/métodos , Abscesso/terapia , Abscesso/complicações , Estomia/efeitos adversos , Dermatopatias/etiologia , Pele , Higiene da Pele
11.
Chin J Traumatol ; 27(4): 235-241, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38637177

RESUMO

PURPOSE: Under-foot impact loadings can cause serious lower limb injuries in many activities, such as automobile collisions and underbody explosions to military vehicles. The present study aims to compare the biomechanical responses of the mainstream vehicle occupant dummies with the human body lower limb model and analyze their robustness and applicability for assessing lower limb injury risk in under-foot impact loading environments. METHODS: The Hybrid III model, the test device for human occupant restraint (THOR) model, and a hybrid human body model with the human active lower limb model were adopted for under-foot impact analysis regarding different impact velocities and initial lower limb postures. RESULTS: The results show that the 2 dummy models have larger peak tibial axial force and higher sensitivity to the impact velocities and initial postures than the human lower limb model. In particular, the Hybrid III dummy model presented extremely larger peak tibial axial forces than the human lower limb model. In the case of minimal difference in tibial axial force, Hybrid III's tibial axial force (7.5 KN) is still 312.5% that of human active lower limb's (2.4 KN). Even with closer peak tibial axial force values, the biomechanical response curve shapes of the THOR model show significant differences from the human lower limb model. CONCLUSION: Based on the present results, the Hybrid III dummy cannot be used to evaluate the lower limb injury risk in under-foot loading environments. In contrast, potential improvement in ankle biofidelity and related soft tissues of the THOR dummy can be implemented in the future for better applicability.


Assuntos
Acidentes de Trânsito , Humanos , Fenômenos Biomecânicos , Acidentes de Trânsito/prevenção & controle , Manequins , Extremidade Inferior/fisiologia , Suporte de Carga
12.
Zhongguo Zhong Yao Za Zhi ; 49(4): 912-923, 2024 Feb.
Artigo em Zh | MEDLINE | ID: mdl-38621898

RESUMO

With the promotion of chemical fertilizer and pesticide reduction and green production of traditional Chinese medicines, microbial fertilizers have become a hot way to achieve the zero-growth of chemical fertilizers and pesticides, improve the yield and qua-lity of medicinal plants, maintain soil health, and promote the sustainable development of the planting industry of Chinese herbal medicines. Soil conditions and microenvironments are crucial to the growth, development, and quality formation of medicinal plants. Microbial fertilizers, as environmentally friendly fertilizers acting on the soil, can improve soil quality by replenishing organic matter and promoting the metabolism of beneficial microorganisms to improve the yield and quality of medicinal plants. In this regard, understanding the mechanism of microbial fertilizer in regulating the quality formation of medicinal plants is crucial for the development of herbal eco-agriculture. This study introduces the processes of microbial fertilizers in improving soil properties, participating in soil nutrient cycling, enhancing the resistance of medicinal plants, and promoting the accumulation of medicinal components to summarize the mechanisms and roles of bacterial fertilizers in regulating the quality formation of medicinal plants. Furthermore, this paper introduces the application of bacterial fertilizers in medicinal plants and makes an outlook on their development, with a view to providing a scientific basis for using microbial fertilizers to improve the quality of Chinese herbal medicines, improve the soil environment, promote the sustainable development of eco-agriculture of traditional Chinese medicine, and popularize the application of microbial fertilizers.


Assuntos
Praguicidas , Plantas Medicinais , Fertilizantes , Agricultura , Solo/química , Bactérias/genética , Extratos Vegetais , Microbiologia do Solo
13.
J Am Chem Soc ; 145(36): 19856-19865, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37653575

RESUMO

Introducing an external visible-light field would be a promising strategy to improve the activity of the electrocatalytic CO2 reduction reaction (CO2RR), but it still remains a challenge due to the short excited-state lifetime of active sites. Herein, Ru(bpy)3Cl2 struts as powerful photosensitive donors were immobilized into the backbones of Co-porphyrin-based covalent organic frameworks (named Co-Bpy-COF-Rux, x is the molar ratio of Ru and Co species, x = 1/2 and 2/3) via coordination bonds, for the photo-coupled CO2RR to produce CO. The optimal Co-Bpy-COF-Ru1/2 displays a high CO Faradaic efficiency of 96.7% at -0.7 V vs reversible hydrogen electrode (RHE) and a CO partial current density of 16.27 mA cm-2 at -1.1 V vs RHE under the assistance of light, both of which were far surpassing the values observed in the dark. The significantly enhanced activity is mainly attributed to the incorporation of a Ru(bpy)3Cl2 donor with long excited-state lifetime and concomitantly giant built-in electric field in Co-Bpy-COF-Ru1/2, which efficiently accelerate the photo-induced electron transfer from Ru(bpy)3Cl2 to the cobalt-porphyrin under the external light. Thus, the cobalt-porphyrin active sites have a longer excited-state lifetime to lower the rate-determining steps' energy occurring during the actual photo-coupled electrocatalytic CO2RR process. This is the first work of porphyrin-based COFs for photo-coupled CO2RR, opening a new frontier for the construction of efficient photo-coupled electrocatalysts.

14.
J Am Chem Soc ; 145(14): 8261-8270, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976930

RESUMO

The photocatalytic conversion of CO2 into C2+ products such as ethylene is a promising path toward the carbon neutral goal but remains a big challenge due to the high activation barrier for CO2 and similar reduction potentials of many possible multi-electron-transfer products. Herein, an effective tandem photocatalysis strategy has been developed to support conversion of CO2 to ethylene by construction of the synergistic dual sites in rhenium-(I) bipyridine fac-[ReI(bpy)(CO)3Cl] (Re-bpy) and copper-porphyrinic triazine framework [PTF(Cu)]. With these two catalysts, a large amount of ethylene can be produced at a rate of 73.2 µmol g-1 h-1 under visible light irradiation. However, ethylene cannot be obtained from CO2 by use of either component of the Re-bpy or PTF(Cu) catalysts alone; with a single catalyst, only monocarbon product CO is produced under similar conditions. In the tandem photocatalytic system, the CO generated at the Re-bpy sites is adsorbed by the nearby Cu single sites in PTF(Cu), and this is followed by a synergistic C-C coupling process which ultimately produces ethylene. Density functional theory calculations demonstrate that the coupling process between PTF(Cu)-*CO and Re-bpy-*CO to form the key intermediate Re-bpy-*CO-*CO-PTF(Cu) is vital to the C2H4 production. This work provides a new pathway for the design of efficient photocatalysts for photoconversion of CO2 to C2 products via a tandem process driven by visible light under mild conditions.

15.
Curr Issues Mol Biol ; 45(3): 2060-2072, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36975502

RESUMO

Animal models have been indispensable in shaping the understanding of myopia mechanisms, with form-deprivation myopia (FDM) and lens-induced myopia (LIM) being the most utilized. Similar pathological outcomes suggest that these two models are under the control of shared mechanisms. miRNAs play an important role in pathological development. Herein, based on two miRNA datasets (GSE131831 and GSE84220), we aimed to reveal the general miRNA changes involved in myopia development. After a comparison of the differentially expressed miRNAs, miR-671-5p was identified as the common downregulated miRNA in the retina. miR-671-5p is highly conserved and related to 40.78% of the target genes of all downregulated miRNAs. Moreover, 584 target genes of miR-671-5p are related to myopia, from which we further identified 8 hub genes. Pathway analysis showed that these hub genes are enriched in visual learning and extra-nuclear estrogen signaling. Furthermore, two of the hub genes are also targeted by atropine, which strongly supports a key role of miR-671-5p in myopic development. Finally, Tead1 was identified as a possible upstream regulator of miR-671-5p in myopia development. Overall, our study identified the general regulatory role of miR-671-5p in myopia as well as its upstream and downstream mechanisms and provided novel treatment targets, which might inspire future studies.

16.
Acc Chem Res ; 55(20): 2978-2997, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36153952

RESUMO

ConspectusThe continuing increase of the concentration of atmospheric CO2 has caused many environmental issues including climate change. Catalytic conversion of CO2 using thermochemical, electrochemical, and photochemical methods is a potential technique to decrease the CO2 concentration and simultaneously obtain value-added chemicals. Due to the high energy barrier of CO2 however, this method is still far from large-scale applications which requires high activity, selectivity, and stability. Therefore, development of efficient catalysts to convert CO2 to different products is urgent. With their well-engineered pores and chemical compositions, high surface area, elevated CO2 adsorption capability, and adjustable active sites, porous crystalline frameworks including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are potential materials for catalytic CO2 conversion. Here, we summarize our recent work on MOFs and COFs for thermocatalytic, electrocatalytic, and photocatalytic CO2 conversion and describe the structure-activity relationships that could guide the design of effective catalysts.The first section of this paper describes imidazolium-functionalized porous MOFs, including porous liquid and cationic MOFs with nucleophilic halogen ions, which can promote thermocatalytically CO2 cycloaddition reaction with epoxides toward cyclic carbonates at one bar pressure. A porous liquid MOF takes on the role of a CO2 reservoir to tackle the low local CO2 concentrations in gas-liquid-solid heterogeneous reactions. Imidazolium-functionalized MOFs with halogen ions for CO2 cycloaddition could avoid the use of cocatalysts, and this leads to milder and more facile experimental conditions and separation processes.In a section dealing with the electrocatalytic CO2 reduction reaction (CO2RR), we developed a series of conductive porous framework materials with fast electron transmission capabilities, which afford high current densities and outperform the traditional MOF and COF catalysts that have been reported. The intrinsically conductive two-dimensional 2D MOFs and COFs nanosheets based on the fully π-conjugated phthalocyanine motif with excellent electron transport capability were prepared, and strong electron transporters were also integrated into metalloporphyrin-based COFs for CO2RR. Cu2O quantum dots and Cu nanoparticles (NPs) can be uniformly dispersed on porous conductive MOFs/COFs to afford synergistic and/or tandem electrocatalysts, which can achieve highly selective production of CH4 or C2H4 in CO2RR.A third section describes our efforts to facilitate electron-hole separation in CO2 photocatalysis. Our focus is on regulation of coordination spheres in MOFs, fabrication of the architecture of MOF heterojunctions, and engineering MOF films to facilitate photocatalytic CO2 reduction.Finally, we discuss several problems associated with the studies of MOFs and COFs for CO2 conversion and consider some prospects of the fabrication of effective porous frameworks for CO2 adsorption and conversion.

17.
Exp Eye Res ; 230: 109460, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001853

RESUMO

Keratoconus is a progressive disorder of the cornea and is typically considered a noninflammatory disease. However, increasing evidence indicates that immune disorders play an essential role in keratoconus progression, but the immune-related etiology remains elusive. Here, we comprehensively utilized bioinformatics approaches and experimental methods to explore the potential immunoregulatory mechanism of keratoconus progression. Transcriptomics data containing two keratoconus patient groups was derived from the public dataset GSE151631. The intersection of genes and known immunological genes was used to obtain differentially expressed immune-related genes. We utilized various protein clustering algorithms to screen out and validated the hub immune-related genes, and further explored their potential biological functions via gene annotation and pathway enrichment analyses. Moreover, the underlying immune landscape and drug targets were predicted by immune cell infiltration analysis and drug-gene interaction analysis. Furthermore, keratoconus-related immunoregulatory competitive endogenous RNA networks were constructed and experimentally validated. After filtering and experimental validation, nine keratoconus-associated immune-related genes were credible. Infiltrated monocytes might play an essential role in the progression of keratoconus. Moreover, eleven intersecting drugs targeting four genes, CCR2, CCR5, F2RL1, and ADORA1, were considered as potential druggable molecular targets for keratoconus. Furthermore, in the competitive endogenous RNA network, we identified several lncRNAs and miRNAs as critical noncoding RNAs regulating the hub genes. Overall, our data indicated that the immunomodulatory patterns had undergone changes in the pathogenesis of keratoconus, which might facilitate the understanding of keratoconus-related immune processes and provide novel insights into developing new immunotherapies for keratoconus.


Assuntos
Ceratocone , MicroRNAs , Humanos , Ceratocone/genética , Transcriptoma , Imunoterapia , Córnea , Redes Reguladoras de Genes
18.
Connect Tissue Res ; 64(6): 519-531, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37310074

RESUMO

BACKGROUND: DICER1-AS1 is reported to promote the progression and disturb the cell cycle in osteosarcoma; however, its mechanism has rarely been studied. MATERIALS AND METHODS: DICER1-AS1 expression levels were evaluated by qPCR and fluorescence in situ hybridization (FISH). The total, nuclear, and cytosolic levels of CDC5L were measured by western blotting and immunofluorescence (IF). Cell proliferation, apoptosis, and cell cycle analyses were conducted using the colony formation, CCK-8 assay, terminal transferase-mediated UTP nick end-labeling kit (TUNEL) assay, and flow cytometry. Levels of cell proliferation-, cell cycle-, and cell apoptosis-related proteins were determined by western blotting. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted to evaluate the relationship between DICER1-AS1 and CDC5L. RESULTS: LncRNA DICER1-AS1 was highly expressed in samples of osteosarcoma tissue and in osteosarcoma cell lines. DICER1-AS1 knockdown inhibited cell proliferation, promoted cell apoptosis, and disturbed the cell cycle. Moreover, DICER1-AS1 was found to bind with CDC5L, and knockdown of DICER-AS1 inhibited the nuclear transfer of CDC5L. DICER1-AS1 knockdown also reversed the effects of CDC5L overexpression on cell proliferation, apoptosis, and the cell cycle. Moreover, CDC5L inhibition suppressed cell proliferation, promoted cell apoptosis, and disturbed the cell cycle, and those effects were further enhanced by DICER1-AS1 knockdown. Finally, DICER1-AS knockdown inhibited tumor growth and proliferation, and promoted cell apoptosis in vivo. CONCLUSION: LncRNA DICER1-AS1 knockdown inhibits the nuclear transfer of CDC5L protein, arrests the cell cycle, and induces apoptosis to suppress the development of osteosarcoma. Our results suggest a novel target (DICER1-AS1) for treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Hibridização in Situ Fluorescente , Proliferação de Células/genética , Ciclo Celular/genética , Osteossarcoma/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Ribonuclease III/genética , Ribonuclease III/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
19.
Med Mycol ; 61(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573133

RESUMO

Vulvovaginal candidiasis (VVC) is an inflammatory disease primarily infected by Candida albicans. The condition has good short-term treatment effects, high recurrence, and seriously affects the quality of life of women. Metabolomics has been applied to research a variety of inflammatory diseases. In the present study, the vaginal metabolic profiles of VVC patients and healthy populations (Cnotrol (CTL)) were explored by a non-targeted metabolomics approach. In total, 211 differential metabolites were identified, with the VVC group having 128 over-expressed and 83 under-expressed metabolites compared with healthy individuals. Functional analysis showed that these metabolites were mainly involved in amino acid metabolism and lipid metabolism. In addition, network software analysis indicated that the differential metabolites were associated with mitogen-activated protein kinase (MAPK) signaling and NF-κB signaling. Further molecular docking suggested that linoleic acid can bind to the acyl-CoA synthetase 1 (ACSL1) protein, which has been shown to be associated with multiple inflammatory diseases and is an upstream regulator of the MAPK and NF-κB signaling pathways that mediate inflammation. Therefore, our preliminary analysis results suggest that VVC has a unique metabolic profile. Linoleic acid, a significantly elevated unsaturated fatty acid in the VVC group, may promote VVC development through the ACSL1/MAPK and ACSL1/NF-κB signaling pathways. This study's findings contribute to further exploring the mechanism of VVC infection and providing new perspectives for the treatment of Candida albicans vaginal infection.


Candida albicans is the main pathogen that causes VVC. Through non-targeted metabolomics, this study shows that VVC caused by C. albicans has unique vaginal metabolic characteristics, the changed metabolites might provide useful diagnostic and therapeutic methods for VVC.


Assuntos
Candidíase Vulvovaginal , Candidíase , Feminino , Animais , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/veterinária , NF-kappa B , Ácido Linoleico , Simulação de Acoplamento Molecular , Qualidade de Vida , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/veterinária , Metabolômica , Homeostase , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico
20.
Inorg Chem ; 62(1): 353-362, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36534736

RESUMO

A series of nearly single-phase Ca- and Pb-codoped BiCuSeO bulks are fabricated via 4 min of microwave heating and 5 min of spark plasma sintering (SPS). The phase composition, microstructure, and valence state of the samples are investigated systematically, and the effects of Ca and Pb dopants being added into the samples to the alternative Bi sites on the cooperative optimization of the electrical and thermal transport properties are discussed. After codoping, the electrical conductivity and power factor of the samples are significantly improved by synchronously optimizing the carrier concentration and carrier mobility. The codoping of Ca and Pb reduces the lattice thermal conductivity, which is attributed to the introduction of high-density stacking faults and nanoprecipitates formed in the process of microwave synthesis and SPS, as well as the fluctuation of volume and mass. As a result, a maximum ZT value of 1.04 in Bi0.88Ca0.06Pb0.06CuSeO is achieved at 873 K, which is ∼2 times larger than that of the undoped BiCuSeO. The remarkable enhancement of the thermoelectric properties combined with the simplicity and high efficiency of the synthesis method emphasizes that the preparation process will have a wide range of application prospects in the future thermoelectric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA