Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Drug Metab Dispos ; 51(3): 306-317, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36810196

RESUMO

The enantiomeric forms of chiral compounds have identical physical properties but may vary greatly in their metabolism by individual enzymes. Enantioselectivity in UDP-glucuronosyl transferase (UGT) metabolism has been reported for a number of compounds and with different UGT isoforms involved. However, the impact of such individual enzyme results on overall clearance stereoselectivity is often not clear. The enantiomers of medetomidine, RO5263397, and propranolol and the epimers testosterone and epitestosterone exhibit more than a 10-fold difference in glucuronidation rates by individual UGT enzymes. In this study, we examined the translation of human UGT stereoselectivity to hepatic drug clearance considering the combination of multiple UGTs to overall glucuronidation, the contribution of other metabolic enzymes such as cytochrome P450s (P450s), and the potential for differences in protein binding and blood/plasma partitioning. For medetomidine and RO5263397, the high individual enzyme (UGT2B10) enantioselectivity translated into ∼3- to >10-fold differences in predicted human hepatic in vivo clearance. For propranolol, the UGT enantioselectivity was irrelevant in the context of high P450 metabolism. For testosterone, a complex picture emerged due to differential epimeric selectivity of various contributing enzymes and potential for extrahepatic metabolism. Quite different patterns of P450- and UGT-mediated metabolism were observed across species, as well as differences in stereoselectivity, indicating that extrapolation from human enzyme and tissue data are essential when predicting human clearance enantioselectivity. SIGNIFICANCE STATEMENT: Individual enzyme stereoselectivity illustrates the importance of three-dimensional drug-metabolizing enzyme-substrate interactions and is essential when considering the clearance of racemic drugs. However, translation from in vitro to in vivo can be challenging as contributions from multiple enzymes and enzyme classes must be combined with protein binding and blood/plasma partitioning data to estimate the net intrinsic clearance for each enantiomer. Preclinical species may be misleading as enzyme involvement and metabolism stereoselectivity can differ substantially.


Assuntos
Glucuronosiltransferase , Propranolol , Humanos , Glucuronosiltransferase/metabolismo , Propranolol/metabolismo , Medetomidina/metabolismo , Testosterona/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo
2.
Drug Metab Dispos ; 49(9): 760-769, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34187837

RESUMO

The expression of ten major drug-metabolizing UDP-glucuronosyltransferase (UGT) enzymes in a panel of 130 human hepatic microsomal samples was measured using a liquid chromatography-tandem mass spectrometry-based approach. Simultaneously, ten cytochromes P450 and P450 reductase were also measured, and activity-expression relationships were assessed for comparison. The resulting data sets demonstrated that, with the exception of UGT2B17, 10th to 90th percentiles of UGT expression spanned 3- to 8-fold ranges. These ranges were small relative to ranges of reported mean UGT enzyme expression across different laboratories. We tested correlation of UGT expression with enzymatic activities using selective probe substrates. A high degree of abundance-activity correlation (Spearman's rank correlation coefficient > 0.6) was observed for UGT1As (1A1, 3, 4, 6) and cytochromes P450. In contrast, protein abundance and activity did not correlate strongly for UGT1A9 and UGT2B enzymes (2B4, 7, 10, 15, and 17). Protein abundance was strongly correlated for UGTs 2B7, 2B10, and 2B15. We suggest a number of factors may contribute to these differences including incomplete selectivity of probe substrates, correlated expression of these UGT2B isoforms, and the impact of splice and polymorphic variants on the peptides used in proteomics analysis, and exemplify this in the case of UGT2B10. Extensive correlation analyses identified important criteria for validating the fidelity of proteomics and enzymatic activity approaches for assessing UGT variability, population differences, and ontogenetic changes. SIGNIFICANCE STATEMENT: Protein expression data allow detailed assessment of interindividual variability and enzyme ontogeny. This study has observed that expression and enzyme activity are well correlated for hepatic UGT1A enzymes and cytochromes P450. However, for the UGT2B family, caution is advised when assuming correlation of expression and activity as is often done in physiologically based pharmacokinetic modeling. This can be due to incomplete probe substrate specificities, but may also be related to presence of inactive UGT protein materials and the effect of splicing variations.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Inativação Metabólica/fisiologia , Fígado/enzimologia , Variação Biológica da População , Ensaios Enzimáticos/métodos , Perfilação da Expressão Gênica/métodos , Eliminação Hepatobiliar , Humanos , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo , Proteômica/métodos
3.
Drug Metab Dispos ; 48(3): 176-186, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31839590

RESUMO

UDP-glucuronosyltransferase (UGT)1A4 and UGT2B10 are the human UGT isoforms most frequently involved in N-glucuronidation of drugs. UGT2B10 exhibits higher affinity than UGT1A4 for numerous substrates, making it potentially the more important enzyme for metabolism of these compounds in vivo. Clinically relevant UGT2B10 polymorphisms, including a null activity splice site mutation common in African populations, can lead to large exposure differences for UGT2B10 substrates that may limit their developability as marketed drugs. UGT phenotyping approaches using recombinantly expressed UGTs are limited by low enzyme activity and lack of validation of scaling to in vivo. In this study, we describe the use of an efficient experimental protocol for identification of UGT2B10-selective substrates (i.e., those with high fraction metabolized by UGT2B10), which exploits the activity difference between pooled human liver microsomes (HLM) and HLM from a phenotypically UGT2B10 poor metabolizer donor. Following characterization of the approach with eight known UGT2B10 substrates, we used ligand-based virtual screening and literature precedents to select 24 potential UGT2B10 substrates of 140 UGT-metabolized drugs for testing. Of these, dothiepin, cidoxepin, cyclobenzaprine, azatadine, cyproheptadine, bifonazole, and asenapine were indicated to be selective UGT2B10 substrates that have not previously been described. UGT phenotyping experiments and tests comparing conjugative and oxidative clearance were then used to confirm these findings. These approaches provide rapid and sensitive ways to evaluate whether a potential drug candidate cleared via glucuronidation will be sensitive to UGT2B10 polymorphisms in vivo. SIGNIFICANCE STATEMENT: The role of highly polymorphic UDP-glucuronosyltransferase (UGT)2B10 is likely to be underestimated currently for many compounds cleared via N-glucuronidation due to high test concentrations often used in vitro and low activity of UGT2B10 preparations. The methodology described in this study can be combined with the assessment of UGT versus oxidative in vitro metabolism to rapidly identify compounds likely to be sensitive to UGT2B10 polymorphism (high fraction metabolized by UGT2B10), enabling either chemical modification or polymorphism risk assessment before candidate selection.


Assuntos
Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/metabolismo , Glucuronosiltransferase/genética , Humanos , Fenótipo , Polimorfismo Genético/genética
4.
Drug Metab Dispos ; 47(2): 124-134, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30478159

RESUMO

UDP-glucuronosyltransferase (UGT)-mediated metabolism is possibly the most important conjugation reaction for marketed drugs. However, there are currently no generally accepted standard incubation conditions for UGT microsomal assays, and substantial differences in experimental design and methodology between laboratories hinder cross-study comparison of in vitro activities. This study aimed to define optimal experimental conditions to determine glucuronidation activity of multiple UGT isoforms simultaneously using human liver microsomes. Hepatic glucuronidation activities of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17 were determined using cocktail incubations of 10 UGT probe substrates. Buffer components and cosubstrates were assessed over a range of concentrations including magnesium chloride (MgCl2; 0-10 mM) and uridine 5'-diphosphoglucuronic acid (UDPGA; 1-25 mM) with either Tris-HCl or potassium phosphate buffer (100 mM, pH 7.4). Greater microsomal glucuronidation activity by different hepatic UGT isoforms was obtained using 10 mM MgCl2 and 5 mM UDPGA with 100 mM Tris-HCl buffer. The influence of bovine serum albumin (BSA; 0.1%-2% w/v) on glucuronidation activity was also assessed. Enzyme- and substrate-dependent effects of BSA were observed, resulting in decreased total activity of UGT1A1, UGT1A3, and UGT2B17 and increased total UGT1A9 and UGT2B7 activity. The inclusion of BSA did not significantly reduce the between-subject variability of UGT activity. Future in vitro UGT profiling studies under the proposed optimized experimental conditions would allow high-quality positive control data to be generated across laboratories, with effective control of a high degree of between-donor variability for UGT activity and for chemical optimization toward lower-clearance drug molecules in a pharmaceutical drug discovery setting.


Assuntos
Ensaios Enzimáticos/métodos , Glucuronosiltransferase/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Microssomos Hepáticos/metabolismo , Adulto , Idoso , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Glucuronídeos/metabolismo , Humanos , Isoenzimas/metabolismo , Cloreto de Magnésio/metabolismo , Masculino , Pessoa de Meia-Idade , Soroalbumina Bovina/metabolismo , Especificidade por Substrato , Espectrometria de Massas em Tandem/métodos , Uridina Difosfato Ácido Glucurônico/metabolismo , Adulto Jovem
5.
J Pharmacol Exp Ther ; 360(1): 164-173, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27821711

RESUMO

Basimglurant, a novel mGlu5-negative allosteric modulator under development for the treatment of major depressive disorder, is cleared via cytochrome P450 (P450)-mediated oxidative metabolism. Initial enzyme phenotyping studies indicated that CYP3A4/5 dominates basimglurant metabolism and highlights a risk for drug-drug interactions when it is comedicated with strong CYP3A4/5 inhibitors or inactivators; however, a clinical drug-drug interaction (DDI) study using the potent and selective CYP3A4/5 inhibitor ketoconazole resulted in an area under the curve (AUC) AUCi/AUC ratio of only 1.24. A further study using the CYP3A4 inducer carbamazepine resulted in an AUCi/AUC ratio of 0.69. More detailed in vitro enzyme phenotyping and kinetics studies showed that, at the low concentrations attained clinically, basimglurant metabolic clearance is catalyzed mainly by CYP1A2. The relative contributions of the enzymes were estimated as 70:30 CYP1A2:CYP3A4/5. Using this information, a clinical study using the CYP1A2 inhibitor fluvoxamine was performed, resulting in an AUCi/AUC ratio of 1.60, confirming the role of CYP1A2 and indicating a balanced DDI risk profile. Basimglurant metabolism kinetics show enzyme dependency: CYP1A2-mediated metabolism follows Michaelis-Menten kinetics, whereas CYP3A4 and CYP3A5 follow sigmoidal kinetics [with similar constant (KM) and S50 values]. The interplay of the different enzyme kinetics leads to changing fractional enzyme contributions to metabolism with substrate concentration, even though none of the metabolic enzymes is saturated. This example demonstrates the relevance of non-Michaelis-Menten P450 enzyme kinetics and highlights the need for a thorough understanding of metabolism enzymology to make accurate predictions for human metabolism in vivo.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Imidazóis/metabolismo , Imidazóis/farmacologia , Piridinas/metabolismo , Piridinas/farmacologia , Adulto , Idoso , Carbamazepina/farmacologia , Interações Medicamentosas , Feminino , Fluvoxamina/farmacologia , Humanos , Cetoconazol/farmacologia , Cinética , Masculino , Pessoa de Meia-Idade , Oxirredução , Adulto Jovem
6.
J Clin Pharmacol ; 59 Suppl 1: S42-S55, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31502688

RESUMO

An understanding of the postnatal development of hepatic UDP-glucuronosyltransferase (UGT) enzymes is required for accurate prediction of the age-dependent changes in pharmacokinetics of many drugs used in children. However, the maturation rate of hepatic UGT isoforms remains a major knowledge gap. This study aimed to establish the age-associated changes in glucuronidation activity of 10 major hepatic UGT isoforms in humans, namely, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17. Human liver microsomes from pediatric and adult donors were incubated under optimized incubation conditions to assess the activity rates of hepatic UGT isoforms using a panel of 19 in vitro UGT probe substrates and clinically used drugs. Statistically strong correlations of glucuronidation activities allowed the ontogeny of UGT1A1, UGT1A4, UGT2B7, UGT2B10, and UGT2B15 to be established using multiple selective UGT substrates and matched human liver microsome samples. The postnatal development of hepatic UGTs is isoform-dependent using either individual or cross-correlated selective isoform substrates. Maximal adult activity was reached at different times ranging from within a month (UGT1A1, UGT2B4, UGT2B7, UGT2B10, and UGT2B15), during infancy (UGT1A3, UGT1A4, and UGT1A9), to adolescence (UGT1A6 and UGT2B17). This study provides an extensive characterization of the postnatal ontogeny profiles of hepatic UGT enzymes that are instrumental for predicting drug disposition via in vitro-in vivo extrapolation algorithms and verifying pharmacokinetic predictions against in vivo observations via pediatric physiologically based pharmacokinetic modeling in pediatric patients.


Assuntos
Glucuronosiltransferase/metabolismo , Fígado/enzimologia , Microssomos Hepáticos/enzimologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Glucuronídeos/metabolismo , Humanos , Lactente , Recém-Nascido , Isoenzimas , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Biotechniques ; 32(3): 516, 518-20, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11926173

RESUMO

A universal restriction site-free cloning method has been developed to precisely insert a DNA fragment into a vector at any desired location without altering any nucleotide(s) in either the DNA fragment or the vector. The technique employs two pairs of chimeric primers, each containing a ribonucleotide. One pair of primers is used to amplify a target DNA fragment and another is used to prepare a linear vector. The ribonucleotide is used as a specific site for cleavage promoted by rare-earth metal ions such as La3+ or Lu3+. Therefore, blunt-ended PCR products can be converted into a dsDNA with single-stranded 3'overhangs for efficient ligation. The primers are designed so that both the target DNA fragment and vector PCR products create defined 3' overhangs to permit the formation of a seamless plasmid during the subsequent ligation. This method has been used successfully to clone the E. coli gene coding for peptidyl-tRNA hydrolase.


Assuntos
Quimera , Clonagem Molecular/métodos , Regiões 3' não Traduzidas/genética , Hidrolases de Éster Carboxílico/genética , Primers do DNA/genética , Enzimas de Restrição do DNA , Escherichia coli , Vetores Genéticos/genética , Lantânio , Lutécio , Técnicas de Amplificação de Ácido Nucleico , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA