Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nutr Neurosci ; 26(1): 11-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34927571

RESUMO

OBJECTIVES: Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS: Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS: CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS: The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Doença de Parkinson/metabolismo , Caenorhabditis elegans , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Animais Geneticamente Modificados , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxidopamina , Degeneração Neural , Autofagia , Lipídeos , Neurônios Dopaminérgicos , Modelos Animais de Doenças
2.
Phytother Res ; 35(2): 954-973, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32893437

RESUMO

Blood-brain barrier (BBB) dysfunction has been implicated in Alzheimer's disease (AD) and is closely linked to the release of proinflammatory cytokines in brain capillary endothelial cells. We have previously reported that lychee seed polyphenols (LSP) exerted anti-neuroinflammatory effect. In this study, we aimed to explore the protective effect of LSP on BBB integrity. The monolayer permeability of bEnd.3 cells, and the mRNA level and protein expression of tight junction proteins (TJs), including Claudin 5, Occludin, and ZO-1, were examined. In addition, the inhibition of Aß(25-35)-induced NLRP3 inflammasome activation, and the autophagy induced by LSP were investigated by detecting the expression of NLRP3, caspase-1, ASC, LC3, AMPK, mTOR, and ULK1. Furthermore, the cognitive function and the expression of TJs, NLRP3, caspase-1, IL-1ß, and p62 were determined in APP/PS1 mice. The results showed that LSP significantly decreased the monolayer permeability and inhibited the NLRP3 inflammasome in Aß(25-35)-induced bEnd3 cells. In addition, LSP induced autophagy via the AMPK/mTOR/ULK1 pathway in bEnd.3 cells, and improved the spatial learning and memory function, increased the TJs expression, and inhibited the expression of NLRP3, caspase-1, IL-1ß, and p62 in APP/PS1 mice. Therefore, LSP protects BBB integrity in AD through inhibiting Aß(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/tratamento farmacológico , Autofagia/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Litchi/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Polifenóis/uso terapêutico , Sementes/química , Animais , Masculino , Camundongos , Camundongos Transgênicos , Polifenóis/farmacologia , Transfecção
3.
Pharmacol Res ; 147: 104396, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404628

RESUMO

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Our previous studies have proven that Trillium tschonoskii Maxim. (TTM), a traditional Chinese medicine, possesses potent anti-tumor effect. However, the detailed components and molecular mechanism of TTM in anti-NSCLC are still unknown. In the present experiment, polyphyllin VI (PPVI) was successfully isolated from TTM with guidance of the anti-proliferative effect in A549 cells, and the cell death of PPVI treated A549 and H1299 cells was closely linked with the increased intracellular ROS levels. In addition, PPVI induced apoptosis by promoting the protein expression of Bax/Bcl2, caspase-3 and caspase-9, and activated autophagy by improving LC3 II conversion and GFP-LC3 puncta formation in A549 and H1299 cells. The mechanism study found that the activity of mTOR which regulates cell growth, proliferation and autophagy was significantly suppressed by PPVI. Accordingly, the PI3K/AKT and MEK/ERK pathways positively regulating mTOR were inhibited, and AMPK negatively regulating mTOR was activated. In addition, the downstream of mTOR, ULK1 at Ser 757 which downregulates autophagy was inhibited by PPVI. The apoptotic cell death induced by PPVI was confirmed, and it was significantly suppressed by the overexpression of AKT, ERK and mTOR, and the induced autophagic cell death which was depended on the Atg7 was decreased by the inhibitors, such as LY294002 (LY), Bafilomycin A1 (Baf), Compound C (CC) and SBI-0206965 (SBI). Furthermore, the mTOR signaling pathway was regulated by the increased ROS as the initial signal in A549 and H1299 cells. Finally, the anti-tumor growth activity of PPVI in vivo was validated in A549 bearing athymic nude mice. Taken together, our data have firstly demonstrated that PPVI is the main component in TTM that exerts the anti-proliferative effect by inducing apoptotic and autophagic cell death in NSCLC via the ROS-triggered mTOR signaling pathway, and PPVI may be a promising candidate for the treatment of NSCLC in future.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Morte Celular Autofágica/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Trillium
4.
Int J Mol Sci ; 19(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30036972

RESUMO

Amyloid-ß (Aß) is commonly recognized as the most important factor that results in neuronal cell death and accelerates the progression of Alzheimer's disease (AD). Increasing evidence suggests that microglia activated by Aß release an amount of neurotoxic inflammatory cytokines that contribute to neuron death and aggravate AD pathology. In our previous studies, we found that lychee seed fraction (LSF), an active fraction derived from the lychee seed, could significantly improve the cognitive function of AD rats and inhibit Aß-induced neuroinflammation in vitro, and decrease neuronal injuries in vivo and in vitro. In the current study, we aimed to isolate and identify the specific components in LSF that were responsible for the anti-neuroinflammation effect using preparative high performance liquid chromatography (pre-HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) methods. To this end, we confirmed two polyphenols including catechin and procyanidin A2 that could improve the morphological status of BV-2 cells and suppress the release, mRNA levels, and protein expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) through downregulating the nuclear factor-κB (NF-κB) signaling pathway using ELISA, RT-PCR, and Western blotting methods. Furthermore, catechin and procyanidin A2 could inhibit Aß-induced apoptosis in BV-2 cells by upregulating Bcl-2 and downregulating Bax protein expression. Therefore, the current study illustrated the active substances in lychee seed, and first reported that catechin and procyanidin A2 could suppress neuroinflammation in Aß-induced BV-2 cells, which provides detailed insights into the molecular mechanism of catechin and procyanidin A2 in the neuroprotective effect, and their further validations of anti-neuroinflammation in vivo is also essential in future research.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Inflamação/tratamento farmacológico , Litchi/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polifenóis/química , Polifenóis/uso terapêutico , Sementes/química , Animais , Apoptose/efeitos dos fármacos , Catequina/metabolismo , Linhagem Celular , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , NF-kappa B/metabolismo , Neurônios/imunologia , Proantocianidinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Free Radic Biol Med ; 179: 76-94, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933095

RESUMO

Activation of the NLRP3 inflammasome and its mediated neuroinflammation are implicated in neurodegenerative diseases, while mitophagy negatively regulates NLRP3 inflammasome activation. SHP-2, a protein-tyrosine phosphatase, is critical for NLRP3 inflammasome regulation and inflammatory responses. In this study, we investigated whether triterpenoid saponins in Radix Polygalae inhibit the NLRP3 inflammasome via mitophagy induction. First, we isolated the active fraction (polygala saponins (PSS)) and identified 17 saponins by ultra-performance liquid chromatography coupled with diode-array detection and tandem quadrupole time-of-flight mass spectrometry (UHPLC-DAD-Q/TOF-MS). In microglial BV-2 cells, PSS induced mitophagy as evidenced by increased co-localization of LC3 and mitochondria, as well as an increased number of autophagic vacuoles surrounding the mitochondria. Furthermore, the mechanistic study found that PSS activated the AMPK/mTOR and PINK1/parkin signaling pathways via the upregulation of SHP-2. In Aß(1-42)-, A53T-α-synuclein-, or Q74-induced BV-2 cells, PSS significantly inhibited NLRP3 inflammasome activation, which was attenuated by bafilomycin A1 (an autophagy inhibitor) and SHP099 (an SHP-2 inhibitor). In addition, the co-localization of LC3 and ASC revealed that PSS promoted the autophagic degradation of the NLRP3 inflammasome. Moreover, PSS decreased apoptosis in conditioned medium-induced PC-12 cells. In APP/PS1 mice, PSS improved cognitive function, ameliorated Aß pathology, and inhibited neuronal death. Collectively, the present study, for the first time, shows that PSS inhibit the NLRP3 inflammasome via SHP-2-mediated mitophagy in vitro and in vivo, which strongly suggests the therapeutic potential of PSS in various neurodegenerative diseases.


Assuntos
Polygala , Saponinas , Animais , Inflamassomos , Camundongos , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Doenças Neuroinflamatórias , Saponinas/farmacologia
6.
Inflamm Regen ; 42(1): 25, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918778

RESUMO

BACKGROUND: NLRP3 inflammasome-mediated neuroinflammation plays a critical role in the pathogenesis and development of Alzheimer's disease (AD). Microglial autophagic degradation not only decreases the deposits of extracellular Aß fibrils but also inhibits the activation of NRLP3 inflammasome. Here, we aimed to identify the potent autophagy enhancers from Penthorum chinense Pursh (PCP) that alleviate the pathology of AD via inhibiting the NLRP3 inflammasome. METHODS: At first, autophagic activity-guided isolation was performed to identify the autophagy enhancers in PCP. Secondly, the autophagy effect was monitored by detecting LC3 protein expression using Western blotting and the average number of GFP-LC3 puncta per microglial cell using confocal microscopy. Then, the activation of NLRP3 inflammasome was measured by detecting the protein expression and transfected fluorescence intensity of NLRP3, ASC, and caspase-1, as well as the secretion of proinflammatory cytokines. Finally, the behavioral performance was evaluated by measuring the paralysis in C. elegans, and the cognitive function was tested by Morris water maze (MWM) in APP/PS1 mice. RESULTS: Four ellagitannin flavonoids, including pinocembrin-7-O-[4″,6″-hexahydroxydiphenoyl]-glucoside (PHG), pinocembrin-7-O-[3″-O-galloyl-4″,6″-hexahydroxydiphenoyl]-glucoside (PGHG), thonningianin A (TA), and thonningianin B (TB), were identified to be autophagy enhancers in PCP. Among these, TA exhibited the strongest autophagy induction effect, and the mechanistic study demonstrated that TA activated autophagy via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways. In addition, TA effectively promoted the autophagic degradation of NLRP3 inflammasome in Aß(1-42)-induced microglial cells and ameliorated neuronal damage via autophagy induction. In vivo, TA activated autophagy and improved behavioral symptoms in C. elegans. Furthermore, TA might penetrate the blood-brain barrier and could improve cognitive function and ameliorate the Aß pathology and the NLRP3 inflammasome-mediated neuroinflammation via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways in APP/PS1 mice. CONCLUSION: We identified TA as a potent microglial autophagy enhancer in PCP that promotes the autophagic degradation of the NLRP3 inflammasome to alleviate the pathology of AD via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways, which provides novel insights for TA in the treatment of AD.

7.
Ageing Res Rev ; 65: 101202, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161129

RESUMO

Neuroinflammation is considered as a detrimental factor in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), etc. Nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3), the most well-studied inflammasome, is abundantly expressed in microglia and has gained considerable attention. Misfolded proteins are characterized as the common hallmarks of neurodegenerative diseases due to not only their induced neuronal toxicity but also their effects in over-activating microglia and the NLRP3 inflammasome. The activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Emerging evidence indicates that microglial autophagy plays an important role in the maintenance of brain homeostasis and the negative regulation of NLRP3 inflammasome-mediated neuroinflammation. The excessive activation of NLRP3 inflammasome impairs microglial autophagy and further aggravates the pathogenesis of neurodegenerative diseases. In this review article, we summarize and discuss the NLRP3 inflammasome and its specific inhibitors in microglia. The crucial role of microglial autophagy and its inducers in the removal of misfolded proteins, the clearance of damaged mitochondria and reactive oxygen species (ROS), and the degradation of the NLRP3 inflammasome or its components in neurodegenerative diseases are summarized. Understanding the underlying mechanisms behind the sex differences in NLRP3 inflammasome-mediated neurodegenerative diseases will help researchers to develop more targeted therapies and increase our diagnostic and prognostic abilities. In addition, the superiority of the combined use of microglial autophagy inducers with the specific inhibitors of the NLRP3 inflammasome in the inhibition of NLRP3 inflammasome-mediated neuroinflammation requires further preclinical and clinical validations in the future.


Assuntos
Inflamassomos , Doenças Neurodegenerativas , Autofagia , Feminino , Humanos , Masculino , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR
8.
Biomed Pharmacother ; 130: 110575, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32768883

RESUMO

Emerging evidence indicates that the enhancement of microglial autophagy inhibits the NLRP3 inflammasome mediated neuroinflammation in Alzheimer's disease (AD). Meanwhile, low density lipoprotein receptor-related protein 1 (LRP1) highly expressed in microglia is able to negatively regulate neuroinflammation and positively regulate autophagy. In addition, we have previously reported that an active lychee seed fraction enriching polyphenol (LSP) exhibits anti-neuroinflammation in Aß-induced BV-2 cells. However, its molecular mechanism of action is still unclear. In this study, we aim to investigate whether LSP inhibits the NLRP3 inflammasome mediated neuroinflammation and clarify its molecular mechanism in Aß-induced BV-2 cells and APP/PS1 mice. The results showed that LSP dose- and time-dependently activated autophagy by increasing the expression of Beclin 1 and LC3II in BV-2 cells, which was regulated by the upregulation of LRP1 and its mediated AMPK signaling pathway. In addition, both the Western blotting and fluorescence microscopic results demonstrated that LSP could significantly suppress the activation of NLRP3 inflammasome by inhibiting the expression of NLRP3, ASC, the cleavage of caspase-1, and the release of IL-1ß in Aß(1-42)-induced BV-2 cells. In addition, the siRNA LRP1 successfully abolished the effect of LSP on the activation of AMPK and its mediated autophagy, as well as the inhibition of NLRP3 inflammasome. Furthermore, LSP rescued PC-12 cells which were induced by the conditioned medium from Aß(1-42)-treated BV-2 cells. Moreover, LSP improved the cognitive function and inhibited the NLRP3 inflammasome in APP/PS1 mice. Taken together, LSP inhibited the NLRP3 inflammasome-mediated neuroinflammation in the in vitro and in vivo models of AD, which was closely associated with the LRP1/AMPK-mediated autophagy. Thus, the findings from this study further provide evidences for LSP serving as a potential drug for the treatment of AD in the future.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides , Inflamassomos/antagonistas & inibidores , Litchi , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos , Polifenóis/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Inflamassomos/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Interferente Pequeno , Ratos , Sementes
9.
J Ethnopharmacol ; 251: 112548, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31917277

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lychee seed, the seed of Litchi chinensis Sonn. is one of the commonly used in traditional Chinese medicine (TCM). It possesses many pharmacological effects such as blood glucose and lipid-lowering effects, liver protection, and antioxidation. Our preliminary studies have proven that an active fraction derived from lychee seed (LSF) can significantly decrease the blood glucose level, inhibit amyloid-ß (Aß) fibril formation and Tau hyperphosphorylation, and improve the cognitive function and behavior of Alzheimer's disease (AD) model rats. AIM OF THE STUDY: The aim of this study was to identify the main active components in LSF that can inhibit the hyperphosphorylation of Tau through improving insulin resistance (IR) in dexamethasone (DXM)-induced HepG2 and HT22 cells. MATERIALS AND METHODS: The isolation was guided by the bioactivity evaluation of the improvement effect of IR in HepG2 and HT22 cells. The mRNA and protein expressions of IRS-1, PI3K, Akt, GSK-3ß, and Tau were measured by RT-PCR, Western blotting, and immunofluorescence methods, respectively. RESULTS: After extraction, isolation, and elucidation using chromatography and spectrum technologies, three polyphenols including catechin, procyanidin A1 and procyanidin A2 were identified from fractions 3, 5, and 9 derived from LSF. These polyphenols inhibit hyperphosphorylated Tau via the up-regulation of IRS-1/PI3K/Akt and down-regulation of GSK-3ß. Molecular docking result further demonstrate that these polyphenols exhibit good binding property with insulin receptor. CONCLUSIONS: catechin, procyanidin A1, and procyanidin A2 are the main components in LSF that inhibit Tau hyperphosphorylation through improving IR via the IRS-1/PI3K/Akt/GSK-3ß pathway. Therefore, the findings in the current study provide novel insight into the anti-AD mechanism of the components in LSF derived from lychee seed, which is valuable for the further development of a novel drug or nutrient supplement for the prevention and treatment of AD.


Assuntos
Resistência à Insulina , Litchi , Polifenóis/farmacologia , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sementes , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Cancers (Basel) ; 12(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941010

RESUMO

Trillium tschonoskii Maxim (TTM), a traditional Chinese medicine, has been demonstrated to have a potent anti-tumor effect. Recently, polyphyllin VI (PPVI), a main saponin isolated from TTM, was reported by us to significantly suppress the proliferation of non-small cell lung cancer (NSCLC) via the induction of apoptosis and autophagy in vitro and in vivo. In this study, we further found that the NLRP3 inflammasome was activated in PPVI administrated A549-bearing athymic nude mice. As is known to us, pyroptosis is an inflammatory form of caspase-1-dependent programmed cell death that plays an important role in cancer. By using A549 and H1299 cells, the in vitro effect and action mechanism by which PPVI induces activation of the NLRP3 inflammasome in NSCLC were investigated. The anti-proliferative effect of PPVI in A549 and H1299 cells was firstly measured and validated by MTT assay. The activation of the NLRP3 inflammasome was detected by using Hoechst33324/PI staining, flow cytometry analysis and real-time live cell imaging methods. We found that PPVI significantly increased the percentage of cells with PI signal in A549 and H1299, and the dynamic change in cell morphology and the process of cell death of A549 cells indicated that PPVI induced an apoptosis-to-pyroptosis switch, and, ultimately, lytic cell death. In addition, belnacasan (VX-765), an inhibitor of caspase-1, could remarkably decrease the pyroptotic cell death of PPVI-treated A549 and H1299 cells. Moreover, by detecting the expression of NLRP3, ASC, caspase-1, IL-1ß, IL-18 and GSDMD in A549 and h1299 cells using Western blotting, immunofluorescence imaging and flow cytometric analysis, measuring the caspase-1 activity using colorimetric assay, and quantifying the cytokines level of IL-1ß and IL-18 using ELISA, the NLRP3 inflammasome was found to be activated in a dose manner, while VX-765 and necrosulfonamide (NSA), an inhibitor of GSDMD, could inhibit PPVI-induced activation of the NLRP3 inflammasome. Furthermore, the mechanism study found that PPVI could activate the NF-κB signaling pathway via increasing reactive oxygen species (ROS) levels in A549 and H1299 cells, and N-acetyl-L-cysteine (NAC), a scavenger of ROS, remarkably inhibited the cell death, and the activation of NF-κB and the NLRP3 inflammasome in PPVI-treated A549 and H1299 cells. Taken together, these data suggested that PPVI-induced, caspase-1-mediated pyroptosis via the induction of the ROS/NF-κB/NLRP3/GSDMD signal axis in NSCLC, which further clarified the mechanism of PPVI in the inhibition of NSCLC, and thereby provided a possibility for PPVI to serve as a novel therapeutic agent for NSCLC in the future.

11.
Phytomedicine ; 65: 153088, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31627105

RESUMO

BACKGROUND: Emerging evidences indicate the important roles of autophagy in anti-oxidative stress, which is closely associated with cancer, aging and neurodegeneration. OBJECTIVE: In the current study, we aimed to identify autophagy inducers with potent anti-oxidative effect from traditional Chinese medicines (TCMs) in PC-12 cells and C. elegans. METHODS: The autophagy inducers were extensively screened in our herbal extracts library by using the stable RFP-GFP-LC3 U87 cells. The components with autophagic induction effect in Trillium tschonoskii Maxim. (TTM) was isolated and identified by using the autophagic activity-guided column chromatography and Pre-HPLC technologies, and MS and NMR spectroscopic analysis, respectively. The anti-oxidative effect of the isolated autophagy inducers was evaluated in H2O2-induced PC-12 cells and C. elegans models by measuring the viability of PC-12 cells and C. elegans, with quantitation on the ROS level in vitro and in vivo using H2DCFDA probe. RESULTS: The total ethanol extract of TTM was found to significantly increase the formation of GFP-LC3 puncta in stable RFP-GFP-LC3 U87 cells. One novel steroidal saponin 1-O-[2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl-(1→2)-4-O-acetyl-α-L-arabinopyranosyl]-21-Deoxytrillenogenin, (Deoxytrillenoside CA, DTCA) and one known steroidal saponin 1-O-[2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl-(1→2)-4-O-acetyl-α-L-arabinopyranosyl]-21-O-acetyl-epitrillenogenin (Epitrillenoside CA, ETCA) were isolated, identified and found to have novel autophagic effect. Both DTCA and ETCA could activate autophagy in PC-12 cells via the AMPK/mTOR/p70S6K signaling pathway in an Atg7-dependent. In addition, DTCA and ETCA could increase the cell viability and decrease the intracellular ROS level in H2O2-treated PC-12 cells and C. elegans, and the further study demonstrated that the induced autophagy contributes to their anti-oxidative effect. CONCLUSION: Our current findings not only provide information on the discovery of novel autophagy activators from TTM, but also confirmed the anti-oxidative effect of the components from TTM both in vitro and in vivo.


Assuntos
Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Dissacaridases/farmacologia , Saponinas/farmacologia , Trillium/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Proteína 7 Relacionada à Autofagia/metabolismo , Caenorhabditis elegans/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dissacaridases/química , Humanos , Peróxido de Hidrogênio/farmacologia , Células PC12 , Extratos Vegetais/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Saponinas/química , Saponinas/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA