Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34849567

RESUMO

MOTIVATION: Understanding chemical-gene interactions (CGIs) is crucial for screening drugs. Wet experiments are usually costly and laborious, which limits relevant studies to a small scale. On the contrary, computational studies enable efficient in-silico exploration. For the CGI prediction problem, a common method is to perform systematic analyses on a heterogeneous network involving various biomedical entities. Recently, graph neural networks become popular in the field of relation prediction. However, the inherent heterogeneous complexity of biological interaction networks and the massive amount of data pose enormous challenges. This paper aims to develop a data-driven model that is capable of learning latent information from the interaction network and making correct predictions. RESULTS: We developed BioNet, a deep biological networkmodel with a graph encoder-decoder architecture. The graph encoder utilizes graph convolution to learn latent information embedded in complex interactions among chemicals, genes, diseases and biological pathways. The learning process is featured by two consecutive steps. Then, embedded information learnt by the encoder is then employed to make multi-type interaction predictions between chemicals and genes with a tensor decomposition decoder based on the RESCAL algorithm. BioNet includes 79 325 entities as nodes, and 34 005 501 relations as edges. To train such a massive deep graph model, BioNet introduces a parallel training algorithm utilizing multiple Graphics Processing Unit (GPUs). The evaluation experiments indicated that BioNet exhibits outstanding prediction performance with a best area under Receiver Operating Characteristic (ROC) curve of 0.952, which significantly surpasses state-of-theart methods. For further validation, top predicted CGIs of cancer and COVID-19 by BioNet were verified by external curated data and published literature.


Assuntos
Biologia Computacional , Simulação por Computador , Modelos Biológicos , Redes Neurais de Computação
2.
Bioinformatics ; 38(19): 4562-4572, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35929794

RESUMO

MOTIVATION: Automatic recognition of chemical structures from molecular images provides an important avenue for the rediscovery of chemicals. Traditional rule-based approaches that rely on expert knowledge and fail to consider all the stylistic variations of molecular images usually suffer from cumbersome recognition processes and low generalization ability. Deep learning-based methods that integrate different image styles and automatically learn valuable features are flexible, but currently under-researched and have limitations, and are therefore not fully exploited. RESULTS: MICER, an encoder-decoder-based, reconstructed architecture for molecular image captioning, combines transfer learning, attention mechanisms and several strategies to strengthen effectiveness and plasticity in different datasets. The effects of stereochemical information, molecular complexity, data volume and pre-trained encoders on MICER performance were evaluated. Experimental results show that the intrinsic features of the molecular images and the sub-model match have a significant impact on the performance of this task. These findings inspire us to design the training dataset and the encoder for the final validation model, and the experimental results suggest that the MICER model consistently outperforms the state-of-the-art methods on four datasets. MICER was more reliable and scalable due to its interpretability and transfer capacity and provides a practical framework for developing comprehensive and accurate automated molecular structure identification tools to explore unknown chemical space. AVAILABILITY AND IMPLEMENTATION: https://github.com/Jiacai-Yi/MICER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos
3.
BMC Bioinformatics ; 23(Suppl 8): 425, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241999

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is a serious disease that endangers human health and is one of the main causes of death. Therefore, using the patient's electronic medical record (EMR) to predict CVD automatically has important application value in intelligent assisted diagnosis and treatment, and is a hot issue in intelligent medical research. However, existing methods based on natural language processing can only predict CVD according to the whole or part of the context information of EMR. RESULTS: Given the deficiencies of the existing research on CVD prediction based on EMRs, this paper proposes a risk factor attention-based model (RFAB) to predict CVD by utilizing CVD risk factors and general EMRs text, which adopts the attention mechanism of a deep neural network to fuse the character sequence and CVD risk factors contained in EMRs text. The experimental results show that the proposed method can significantly improve the prediction performance of CVD, and the F-score reaches 0.9586, which outperforms the existing related methods. CONCLUSIONS: RFAB focuses on the key information in EMR that leads to CVD, that is, 12 risk factors. In the stage of risk factor identification and extraction, risk factors are labeled with category information and time attribute information by BiLSTM-CRF model. In the stage of CVD prediction, the information contained in risk factors and their labels is fused with the information of character sequence in EMR to predict CVD. RFAB makes well use of the fine-grained information contained in EMR, and also provides a reliable idea for predicting CVD.


Assuntos
Doenças Cardiovasculares , Registros Eletrônicos de Saúde , Humanos , Processamento de Linguagem Natural , Redes Neurais de Computação , Fatores de Risco
4.
BMC Bioinformatics ; 22(1): 432, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507528

RESUMO

BACKGROUND: Interactions of microbes and diseases are of great importance for biomedical research. However, large-scale of microbe-disease interactions are hidden in the biomedical literature. The structured databases for microbe-disease interactions are in limited amounts. In this paper, we aim to construct a large-scale database for microbe-disease interactions automatically. We attained this goal via applying text mining methods based on a deep learning model with a moderate curation cost. We also built a user-friendly web interface that allows researchers to navigate and query required information. RESULTS: Firstly, we manually constructed a golden-standard corpus and a sliver-standard corpus (SSC) for microbe-disease interactions for curation. Moreover, we proposed a text mining framework for microbe-disease interaction extraction based on a pretrained model BERE. We applied named entity recognition tools to detect microbe and disease mentions from the free biomedical texts. After that, we fine-tuned the pretrained model BERE to recognize relations between targeted entities, which was originally built for drug-target interactions or drug-drug interactions. The introduction of SSC for model fine-tuning greatly improved detection performance for microbe-disease interactions, with an average reduction in error of approximately 10%. The MDIDB website offers data browsing, custom searching for specific diseases or microbes, and batch downloading. CONCLUSIONS: Evaluation results demonstrate that our method outperform the baseline model (rule-based PKDE4J) with an average [Formula: see text]-score of 73.81%. For further validation, we randomly sampled nearly 1000 predicted interactions by our model, and manually checked the correctness of each interaction, which gives a 73% accuracy. The MDIDB webiste is freely avaliable throuth http://dbmdi.com/index/.


Assuntos
Pesquisa Biomédica , Mineração de Dados , Aprendizado de Máquina , Publicações
5.
BMC Med Inform Decis Mak ; 20(Suppl 3): 123, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646495

RESUMO

BACKGROUND: Electronic medical records contain a variety of valuable medical information for patients. So, when we are able to recognize and extract risk factors for disease from EMRs of patients with cardiovascular disease (CVD), and are able to use them to predict CVD, we have the ability to automatically process clinical texts, resulting in an improved accuracy of supporting doctors for the clinical diagnosis of CVD. In the case where CVD is becoming more worldwide, predictive CVD based on EMRs has been studied by many researchers to address this important aspect of improving diagnostic efficiency. METHODS: This paper proposes an Enhanced Character-level Deep Convolutional Neural Networks (EnDCNN) model for cardiovascular disease prediction. RESULTS: On the manually annotated Chinese EMRs corpus, our risk factor identification extraction model achieved 0.9073 of F-score, our prediction model achieved 0.9516 of F-score, and the prediction result is better than the most previous methods. CONCLUSIONS: The character-level model based on text region embedding can well map risk factors and their labels as a unit into a vector, and downsampling plays a crucial role in improving the training efficiency of deep CNN. What's more, the shortcut connections with pre-activation used in our model architecture implements dimension-matching free in training.


Assuntos
Doenças Cardiovasculares , Doenças Cardiovasculares/diagnóstico , Registros Eletrônicos de Saúde , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA