Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Aquac Nutr ; 2023: 6628805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266415

RESUMO

The dietary effects of replacing fish meal with enzymatic cottonseed protein (ECP) on the growth performance, immunity, antioxidant, and intestinal health of Chinese soft-shelled turtles have not been explored. An eight-week feeding trial was conducted with a quadruplicated group of turtles (3.44 ± 0.01 g) that were randomly assigned to 16 cages (0.6 m × 0.6 m × 0.6 m) with 30 turtles that were stocked in each cage. Four dietary groups were fed with diets supplemented with 0, 2%, 4%, and 6% (ECP0 group (control group), ECP2 group, ECP4 group, ECP6 group) of enzymatic cottonseed protein replacing fishmeal. The present study illustrated that the final weight and WG in the ECP2 and ECP4 groups were significantly increased (P < 0.05) compared with the control group. The ECP2, ECP4, and ECP6 groups significantly reduced the feed coefficient (P < 0.05) and significantly increased the SGR (P < 0.05). The serum TP and ALB of the ECP4 group were significantly increased (P < 0.05). The ECP2, ECP4, and ECP6 groups significantly increased the activity of intestinal pepsin (P < 0.05), and the activity of intestinal lipase of the EPC4 group was significantly increased (P < 0.05). The intestinal villus height of the EPC4 group and EPC6 group, the villus width of the EPC2 group and EPC4 group, and the intestinal muscle thickness of the EPC4 group were significantly increased (P < 0.05). At the same time, replacing fishmeal with enzymatic cottonseed protein also affected the intestinal inflammation-related genes compared with the control group. Besides that, the expression of the IL-10 gene in the experimental group was significantly upregulated (P < 0.05). Nevertheless, the expression of TNF-α and IL-8 genes in the ECP2 group and TNF-α and IL-1ß genes in the ECP4 group was significantly downregulated (P < 0.05). In summary, replacing fish meal with enzymatic cottonseed protein positively affects the growth, immunity, and intestinal health of Chinese soft-shelled turtles. The appropriate proportion of enzymatic cottonseed protein to replace fish meal in turtle feed is 4%.

2.
Front Immunol ; 14: 1140678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266423

RESUMO

To investigate the effects of dietary tributyrin (TB) and alanyl-glutamine (AGn) on the intestinal health of largemouth bass (Micropterus salmoides) fed with high-level soybean meal (SM) diet, six isonitrogenous (41.36%) and isolipidic (10.25%) diets were formulated and fed to largemouth bass (initial body weight 25.5 ± 0.5g) for 8 weeks. The two control diets contained 34.8% peanut meal (PM) and 41.3% SM, while the other four experimental diets supplemented TB at 0.1% (TB0.1), 0.2% (TB0.2) and AGn at 1% (AGn1), 2% (AGn2) in SM, respectively. The results showed that there were no significant differences in weight gain, survival rate, and hepatosomatic index among all groups (P>0.05), while feed coefficient rate in AGn1, AGn2 and TB0.2 groups was significantly lower than that in SM group (P< 0.05). Compared with the PM group, the intestinal inflammation of largemouth bass in SM group were obvious, accompanied by the damage of intestinal structure, the decrease of digestive enzyme activity, and the up-regulation of proinflammatory cytokines. Compared with the SM group, the activities of intestinal trypsin, lipase and foregut amylase in TB and AGn groups increased significantly (P<0.05), and the gene expression levels of acetyl-CoA carboxylase (ACC), caspase-3, caspase-8, caspase-9, tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1ß) were down-regulated, while the gene expression levels of target of rapamycin (TOR) and eIF4E-binding protein (4E-BP) were up-regulated in all experimental groups (P<0.05). It can be concluded that supplementation of 1%-2% AGn and 0.1%-0.2% TB can alleviate enteritis caused by high-level soybean meal, and the recommend level is 2% AGn and 0.2% TB.


Assuntos
Bass , Animais , Bass/genética , Farinha , Dieta , Dipeptídeos , Glycine max
3.
Animals (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36899721

RESUMO

To investigate the effect of poultry by-product meal (PBM) replacing fish meal on the growth and intestinal health of Chinese soft-shelled turtle (Pelodiscus sinensis). Four experimental diets were prepared. Fish meal was replaced by 0 (control group, PBM0), 5% (PBM5), 10% (PBM10), and 15% (PBM15) PBM. Compared to the control group, final body weight, weight gain, and specific growth rate were significantly increased, while feed conversion rate decreased significantly in the PBM10 group (p < 0.05). The PBM15 group significantly increased the moisture content and significantly decreased the ash content of the turtles (p < 0.05). The PBM5 and PBM15 groups significantly decreased the whole-body crude lipid (p < 0.05). The serum glucose content increased significantly in the PBM10 group (p < 0.05). The liver malonaldehyde content significantly decreased in the PBM5 group and in the PBM10 group (p < 0.05). Liver glutamic-oxalacetic transaminase and intestinal pepsin activity were increased significantly in the PBM15 group (p < 0.05). The expression of the intestinal interleukin 10 (IL-10) gene was significantly down-regulated in the PBM10 group and the PBM15 group (p < 0.05), the expression of the intestinal interferon-γ (IFN-γ), interleukin-8 (IL-8), and liver toll-like receptor 4 (TLR4) and toll-like receptor 5 (TLR5) genes were significantly up-regulated in the PBM5 group (p < 0.05). In summary, poultry by-product meal can be used as a protein source to replace fish meal in turtle feed. Based on quadratic regression analysis, the optimal replacement ratio is 7.39%.

4.
Front Immunol ; 14: 1140012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187750

RESUMO

This study investigated the glycinin and ß-conglycinin induced intestinal damage and α-ketoglutarate alleviating the damage of glycinin and ß-conglycinin in intestine. Carp were randomly divided into six dietary groups: containing fish meal (FM) as the protein source, soybean meal (SM), glycinin (FMG), ß-conglycinin (FMc), glycinin+1.0% α-ketoglutarate (AKG) (FMGA), ß-conglycinin+1.0% AKG (FMcA). The intestines were collected on 7th, and the hepatopancreas and intestines were collected on 56th. Fish treated with SM and FMc displayed reduced weight gain, specific growth rate, and protein efficiency. On 56th day, Fish fed on SM, FMG and FMc presented lower superoxide dismutase (SOD) activities. FMGA and FMcA had higher SOD activity than those fed on the FMG and FMc, respectively. In intestine, fish fed on the SM diets collected on 7th presented upregulated the expression of transforming growth factor beta (TGFß1), AMP-activated protein kinase beta (AMPKß), AMPKγ, and acetyl-CoA carboxylase (ACC). Fish fed FMG presented upregulated expression of tumor necrosis factor alpha (TNF-α), caspase9, and AMPKγ, while downregulated the expression of claudin7 and AMPKα. FMc group presented upregulated expression of TGFß1, caspase3, caspase8, and ACC. Fish fed FMGA showed upregulated expression of TGFß1, claudin3c, claudin7, while downregulating the expression of TNF-α and AMPKγ when compared to fish fed FMG diet. FMcA upregulated the expression of TGFß1, claudin3c than fed on the FMc. In intestine, the villus height and mucosal thickness of the proximal intestine (PI) and the distal intestine (DI) were decreased and crypt depth of the PI and mid intestine (MI) were increased in SM, FMG and FMc. In addition, fish fed on SM, FMG and FMc presented lower citrate synthase (CS), isocitrate dehydrogenase (ICD), α-ketoglutarate dehydrogenase complex (α-KGDHC) Na+/K+-ATPase activity in DI. FMGA had higher CS, ICD, α-KGDHC, and Na+/K+-ATPase activity in PI and MI than those fed on the FMG. FMcA had higher Na+/K+-ATPase activity in MI. In conclusion, dietary soybean meal destroys the intestine's health, the adverse effects are related to the presence of ß-conglycinin and glycinin, especially glycinin. AKG may regulate intestinal energy via tricarboxylic acid cycle, thereby alleviating the damage intestinal morphology caused by the dietary soybean antigen proteins.


Assuntos
Carpas , Animais , Ácidos Cetoglutáricos/farmacologia , Intestinos , Fator de Necrose Tumoral alfa/farmacologia , Dieta , Glycine max , Superóxido Dismutase , Adenosina Trifosfatases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA