Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nano Lett ; 24(7): 2264-2272, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324803

RESUMO

Developing general methods to fabricate water-dispersible and biocompatible fluorescent probes will promote different biological visualization applications. Herein, we report a metal-facilitated method to fabricate ultrabright green-emissive nanodots via the one-step solvothermal treatment of rose bengal, ethanol, and various metal ions. These metal-doped nanodots show good water dispersity, ultrahigh photoluminescence quantum yields (PLQYs) (e.g., the PLQY of Fe-doped nanodots (FeNDs) was ∼97%), and low phototoxicity. Owing to the coordination effect of metal ions, the FeNDs realize glutathione detection with outstanding properties. Benefiting from the high endoplasmic reticulum (ER) affinity of the chloride group, the FeNDs can act as an ER tracker with long ER imaging capacity (FeNDs: >24 h; commercial ER tracker: ∼1 h) and superb photostability and can achieve tissue visualization in living Caenorhabditis elegans. The metal-doped nanodots represent a general nanodot preparation method and may shed new light on diverse biological visualization uses.


Assuntos
Pontos Quânticos , Carbono , Corantes Fluorescentes , Íons , Água
2.
Anal Chem ; 95(38): 14297-14307, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37718478

RESUMO

In this paper, a photoelectrochemical (PEC)-surface-enhanced Raman scattering (SERS) dual-mode biosensor is constructed coupled with a dual-recognition binding-induced DNA walker with a carbon nitride nanosheet (C3N4)/MXene-gold nanoparticles (C/M-Au NPs) accelerator, which is reliable and capable for sensitive and accurate detection of Staphylococcus aureus (S. aureus). Initially, a photoactive heterostructure is formed by combining C3N4 and MXene via a simple electrostatic self-assembly as they possess well-matched band-edge energy levels. Subsequently, in situ growth of gold nanoparticles on the formed surface results in better PEC performance and SERS activity, because of the synergistic effects of surface plasmon resonance and Schottky barrier. Furthermore, a three-dimensional, bipedal, and dual-recognition binding-induced DNA walker is introduced with the formation of Pb2+-dependent DNAzyme. In the presence of S. aureus, a significant quantity of intermediate DNA (I-DNA) is generated, which can open the hairpin structure of Methylene Blue-tagged hairpin DNA (H-MB) on the electrode surface, thereby enabling the switch of signals for the quantitative determination of S. aureus. The constructed PEC-SERS dual-mode biosensor that can be mutually verified under one reaction effectively addresses the problem of the low detection accuracy of traditional sensors. Experimental results revealed that the effective combination of PEC and SERS is achieved for amplification detection of S. aureus with a detection range of 5-108 CFU/mL (PEC) and 10-108 CFU/mL (SERS), and a detection of limit of 0.70 CFU/mL (PEC) and 1.35 CFU/mL (SERS), respectively. Therefore, this study offers a novel and effective dual-mode sensing strategy, which has important implications for bioanalysis and health monitoring.


Assuntos
Nanopartículas Metálicas , Infecções Estafilocócicas , Humanos , Ouro , Staphylococcus aureus , DNA
3.
BMC Cardiovasc Disord ; 23(1): 27, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650429

RESUMO

INTRODUCTION: Left atrial appendage closure (LAAC) is a novel treatment for stroke prevention in high-risk patients with non-valvular atrial fibrillation (NVAF). However, the long-term outcomes after LAAC in Chinese NVAF patients are still lacking. METHODS: This was a single-center, bidirectional, nonrandomized registered study. Patients who underwent LAAC implantation from May 2014 to April 2021 in a large Chinese center were enrolled. The primary endpoint was combined all-cause death and stroke. RESULTS: From May 2014 to April 2021, a total of 673 NVAF patients were enrolled. The overall successful implantation rate was 97.62% (657 of 673). The rate of perioperative adverse events was 1.19% (8 of 673), including 3 cardiac tamponades, 2 ischemic strokes, one device-related thrombus (DRT) and 2 device dislocations. 604 (92.24%) patients completed the follow-up, the median follow-up period was 36.9 months (IQR 24.8-56.5 months). 16 stroke events occurred in 15 patients (one patient suffered from both hemorrhagic and ischemic strokes). 13 patients (2.15%) had ischemic stroke, and the fatal rate was 0.33% (2 of 604). 3 patients (0.15%) suffered from hemorrhagic stroke, and the fatal rate was 0.17% (1 of 604). The overall stroke rate was 0.74% per-year. The combined death and stroke rate was 1.93% per-year. In the multivariate Cox regression analysis, age ≥ 75 (hazard ratio 2.264, 95% CI 1.074-4.772, P = 0.032) and ventricular cardiomyopathy (hazard ratio 2.738, 95% CI 1.060-7.071, P = 0.037) were independent predictors of combined mortality and stroke. CONCLUSION: The overall successful implantation rate of LAAC was 97.62% and the rate of perioperative adverse events was 1.19% in this study, and the stroke rate was 0.74% per year during the long-term follow-up. Age ≥ 75 years and ventricular cardiomyopathy were independent predictors of the primary endpoint. Trial registration This study was retrospectively registered.


Assuntos
Apêndice Atrial , Fibrilação Atrial , AVC Isquêmico , Acidente Vascular Cerebral , Idoso , Humanos , Apêndice Atrial/diagnóstico por imagem , Apêndice Atrial/cirurgia , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/terapia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Resultado do Tratamento
4.
Mikrochim Acta ; 191(1): 51, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147085

RESUMO

Monolayer g-C3N4-modified Au/Ag nanorods (g-C3N4/Au/Ag NRs) array is fabricated as a dual-function platform with high surface-enhanced Raman scattering (SERS) response and excellent photocatalytic degradation ability for bisphenol A (BPA) residues. FDTD simulation results of Au/Ag NRs proves that the electromagnetic field intensity is significantly enhanced at the gap of Ag NRs and Au NPs and the protrusion of Au NPs, which endows the arrays with excellent SERS activity. The arrays exhibit high sensitivity for rhodamine 6G (R6G) (LOD = 1.1 × 10-11 mol/L) and high SERS enhancement (EF = 9.2 × 107). In addition, the g-C3N4/Au/Ag NRs could degrade ˃90% of BPA adsorbed on the substrate surface within 140 min under visible light irradiation, and maintains its SERS activity after repeated use for 4 times. The dual-function platform with high SERS response and excellent recycling capability is proved to be reliable and is very promising for monitoring of BPA residues in food.

5.
Angew Chem Int Ed Engl ; 62(35): e202308506, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37416970

RESUMO

The development of nanoscaled luminescent metal-organic frameworks (nano-LMOFs) with organic linker-based emission to explore their applications in sensing, bioimaging and photocatalysis is of great interest as material size and emission wavelength both have remarkable influence on their performances. However, there is lack of platforms that can systematically tune the emission and size of nano-LMOFs with customized linker design. Herein two series of fcu- and csq-type nano-LMOFs, with precise size control in a broad range and emission colors from blue to near-infrared, were prepared using 2,1,3-benzothiadiazole and its derivative based ditopic- and tetratopic carboxylic acids as the emission sources. The modification of tetratopic carboxylic acids using OH and NH2 as the substituent groups not only induces significant emission bathochromic shift of the resultant MOFs, but also endows interesting features for their potential applications. As one example, we show that the non-substituted and NH2 -substituted nano-LMOFs exhibit turn-off and turn-on responses for highly selective and sensitive detection of tryptophan over other nineteen natural amino acids. This work sheds light on the rational construction of nano-LMOFs with specific emission behaviours and sizes, which will undoubtedly facilitate their applications in related areas.

6.
J Am Chem Soc ; 144(48): 22170-22177, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416791

RESUMO

Herein, we demonstrate the successful utilization of reticular chemistry as an excellent designing strategy for the deliberate construction of a zirconium-tetracarboxylate metal-organic framework (MOF) inspired by the Olympic rings. HIAM-4017, with an unprecedented (4,8)-c underlying net topology termed jcs, was developed via insightful reconstruction of the rings and judicious design of a nonsymmetric organic linker. HIAM-4017 exhibits high porosity and excellent chemical and thermal stability. Furthermore, excited-state intramolecular proton transfer (ESIPT) was achieved in an isoreticular MOF, HIAM-4018, with a large Stokes shift of 155 nm as a result of introducing the hydroxyl group to the linker skeleton to induce OH···N interactions. Such interactions were analyzed thoroughly by employing the time-dependent density functional theory (TD-DFT). Because of their good thermal and chemical stability, and strong luminescence, nanosized HIAM-4017 and HIAM-4018 were fabricated and used for Cr2O72- detection. Both MOFs demonstrate excellent sensitivity and selectivity. This work represents a neat example of building structure- and property-specific MOFs guided by reticular chemistry.


Assuntos
Estruturas Metalorgânicas , Teoria da Densidade Funcional , Zircônio , Luminescência , Porosidade
7.
Mikrochim Acta ; 189(5): 197, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459974

RESUMO

Chlorpyrifos is one of the most widely used organophosphate insecticides in agricultural production. Nevertheless, the residues of chlorpyrifos in agricultural by-product seriously threaten human health. Thus, the ultrasensitive detection of chlorpyrifos residues in agri-food products is of great demand. Herein, an AuNP/HNT-assembled disposable paper SERS substrate was prepared by an electrostatic self-assembly method to detect chlorpyrifos residues. The AuNP/HNT paper substrate exhibited high SERS activity, good reproducibility, and long-term stability, which was successfully used for quantitative detection of chlorpyrifos; the detection limit reached 7.9 × 10-9 M. For spiked apple samples the calculated recovery was 87.9% with a RSD value of 6.1%. The excellent detection ability of AuNP/HNT paper-based SERS substrate indicated that it will play an important role in pesticide detection in the future. AuNP/HNT assembled disposable paper SERS substrate was prepared by an electrostatic self-assembly method to detect chlorpyrifos residues in fruits.


Assuntos
Clorpirifos , Nanopartículas Metálicas , Nanotubos , Clorpirifos/análise , Argila , Frutas/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanotubos/química , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
8.
Anal Chem ; 93(25): 8693-8697, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34137589

RESUMO

The separation and chemical analysis of mixtures in an emergency situation represent major challenges, especially in remote or poverty-stricken areas. A novel method was developed for the rapid separation and detection of multiple components via paper centrifugal chromatography, which costs as little as $2.26 US. The method was realized based on the combination of portable paper centrifugal chromatography and surface-enhanced Raman scattering (SERS) detection. This coupled technique was successfully implemented for the separation and qualitative analysis of a rhodamine 6G-crystal violet mixture and a colorless aniline-pyrocatechol-benzidine mixture. A chromatographic mobile phase was collected using absorbent cotton, which was demonstrated to have no effect on the SERS results. The optimized device achieved rapid and effective separation of the colorless aniline-pyrocatechol-benzidine mixture with a high centrifugal force (0.3303π2 N). The newly developed method involving multicomponent paper centrifugal chromatography-SERS detection will be of great value for emergency-related substance separation and analysis in remote and poor areas.


Assuntos
Violeta Genciana , Análise Espectral Raman , Cromatografia
9.
J Thromb Thrombolysis ; 52(3): 872-879, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33666825

RESUMO

Up to now we have had few evidences on the Non-vitamin K Antagonist Oral Anticoagulants (NOACs)' efficacy and safety in preventing device-related thrombosis (DRT) after percutaneous left atrial appendage closure (LAAC). After LAAC implantation, short-term anticoagulation (NOACs or warfarin) was prescribed. Baseline clinical characteristics, procedural parameters and postoperative follow up data were collected and compared between the two groups. From May 2014 to June 2018, 361 consecutive patients underwent LAAC implantation in our center. 170 patients received warfarin for 45 days at least after LAAC implantation, who were compared with 170 age-matched patients on NOACs. The basic clinical characteristics, as well as procedural parameters were comparable between the two groups, while the NOACs group had higher average CHA2DS2-VASc score (3.3  ±  1.6 vs. 2.9  ±  1.5, P = 0.022*). At 45 days follow up, 289 (86.5%) patients received transoesophageal echocardiography (TEE), and the overall incidence of DRT was 2.4%. The DRT rate was not significantly different between the NOACs and warfarin groups (2.7% vs. 2.1%, P > 0.05), while the NOACs group showed lower all bleeding rate (1.2% vs. 9.0%, P < 0.01). The rates of ischemic stroke as well as major bleeding were comparable between the two groups. Except for 7 DRTs and 1 major peri-device leakage (> 5 mm), anticoagulation was terminated in all other patients. During the follow-up thereafter (mean 868 days), the rates of all-cause death, ischemic stroke and bleeding were comparable between the two groups. Short-term NOACs after LAAC appear to be as effective as warfarin in preventing DRT, with lower bleeding rate.


Assuntos
Apêndice Atrial , Fibrilação Atrial , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Administração Oral , Anticoagulantes/efeitos adversos , Apêndice Atrial/cirurgia , Fibrilação Atrial/tratamento farmacológico , Hemorragia/tratamento farmacológico , Humanos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Trombose/tratamento farmacológico , Trombose/etiologia , Trombose/prevenção & controle , Resultado do Tratamento , Varfarina/efeitos adversos
10.
Mikrochim Acta ; 188(6): 201, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34041602

RESUMO

The incidence of disease arising from food-borne pathogens is increasing continuously and has become a global public health problem. Rapid and accurate identification of food-borne pathogens is essential for adopting disease intervention strategies and controlling the spread of epidemics. Surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest due to the attractive features including simplicity, rapid measurement, and high sensitivity. It can be used for rapid in situ sensing of single and multicomponent samples within the nanostructure-based confined space by providing molecular fingerprint information and has been demonstrated to be an effective detection strategy for pathogens. This article aims to review the application of SERS to the rapid sensing of food-borne pathogens in food matrices. The mechanisms and advantages of SERS, and detection strategies are briefly discussed. The latest progress on the use of SERS for rapid detection of food-borne bacteria and viruses is considered, including both the labeled and label-free detection strategies. In closing, according to the current situation regarding detection of food-borne pathogens, the review highlights the challenges faced by SERS and the prospects for new applications in food safety. Graphical abstract In this review, the advances on the SERS detection of pathogens over the past decades have been reviewed, focusing on the improvements in sensitivity, reproducibility, specificity, and the performance of the SERS-based assay in complex analytical scenarios.


Assuntos
Bactérias/isolamento & purificação , Análise Espectral Raman/métodos , Vírus/isolamento & purificação , Microbiologia de Alimentos/métodos , Inocuidade dos Alimentos/métodos
11.
Analyst ; 145(22): 7421-7428, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32945309

RESUMO

Ultrathin two-dimensional MXene nanosheets were decorated on the surface of silver nanorods (AgNRs) through a facile modification strategy to prepare highly sensitive and reproducible SERS substrates (AgNR/MXene substrate). The MXene nanosheets could suppress the oxidation of the silver nanorods, which endows the substrate with good stability and reproducibility. Due to the strong interaction between AgNR/MXene and the analytes, the substrate also exhibited high SERS performance with the limit of detection (LOD) of crystal violet (CV) as low as 2.48 × 10-11 M. In particular, the AgNR/MXene substrate enabled on-site determination of 3,3',4,4'-tetrachlorobiphenyl (PCB-77) and 4-chlorobiphenyl (PCB-3) and the LODs were low at 2.43 × 10-10 and 2.14 × 10-9 M, respectively. In addition, the AgNR/MXene substrate could be used for the detection of single-component and multi-component PCBs in real soil samples with good recovery percentages (90.3% and 91.6% for PCB-3 and PCB-77 in single-component format, 108.1% and 106.5% for PCB-3 and PCB-77 in multi-component format). The AgNR/MXene substrate combines the synergistic properties of both AgNRs and MXene, showing great potential in simultaneous SERS detection of multiple pollutants at the point of need.

12.
Mikrochim Acta ; 187(5): 310, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32367314

RESUMO

A disposable surface-enhanced Raman scattering (SERS) substrate was prepared by successively spraying silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) onto commercial filter paper using an inexpensive consumer sprayer. The strong surface enhancement of AgNPs and chemical stability of AuNPs can be advantageously combined. The substrate exhibited excellent SERS activity for malachite green (MG), methylene blue (MB), and crystal violet (CV) under 785-nm excitation, with limits of detection (LODs) of 4.3 × 10-9, 2.0 × 10-8, and 8.1 × 10-8 M, respectively. The substrate exhibited long-term stability, and it can be stored under ambient conditions for 4 weeks with a relative standard deviation of less than 3% among peak intensities. The substrate also showed good reproducibility with a relative standard deviation of 7.1% among different substrate peak intensities. The substrates enable on-site determination of residual fishery drugs and distinguish MG, MB, and CV mixtures in spiked fish within 5 min, and the average recoveries in fish scales and fish meat were better 90.1% and 76.9%, respectively. The method exhibited rapidity, simplicity, and high sensitivity and is expected to be used for the screening of additives in food.

13.
Analyst ; 141(10): 3033-40, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27069984

RESUMO

We present a 200 nm in-diameter single-bead sensor for the detection of single, unlabeled DNA molecules in solution using fluorescence resonance energy transfer technology. DNA-bound Alexa 488 and Crimson 625 loaded on commercial beads served as the donor and acceptor, respectively. Binding of the target DNA to the single bead sensor induces G-quadruplex stretching, resulting in a decrease in fluorescence energy transfer. G-rich telomere sequences formed a G-quadruplex structure in the presence of ZnTCPP, as demonstrated by the detection of two strong donor and acceptor signals. The sensitivity of the sensor was 1 fM. Under optimized conditions using a polydimethylsiloxane microfluidic device, we measured the number of sensor beads by direct counting. By controlling the flow rate via the probe volume, one sensing experiment can be completed in 5 minutes. Based on these results, we propose a new parameter-dependability (RS)-as a quantitative measure to judge the quality of a bio-sensor. This parameter is based on the ratio of the sensor and sensing sample fluorescence signals. This parameter can range from 0.1 to 100, where a value of 10 represents an optimized bio-sensor.


Assuntos
Técnicas Biossensoriais , DNA , Transferência Ressonante de Energia de Fluorescência , Quadruplex G , Telômero/química , Fluorescência
14.
Angew Chem Int Ed Engl ; 54(43): 12758-61, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26314839

RESUMO

Hydrogen sulfide (H2 S) has emerged as an important gasotransmitter in diverse physiological processes, although many aspects of its roles remain unclear, partly owing to a lack of robust analytical methods. Herein we report a novel surface-enhanced Raman scattering (SERS) nanosensor, 4-acetamidobenzenesulfonyl azide-functionalized gold nanoparticles (AuNPs/4-AA), for detecting the endogenous H2 S in living cells. The detection is accomplished with SERS spectrum changes of AuNPs/4-AA resulting from the reaction of H2 S with 4-AA on AuNPs. The SERS nanosensor exhibits high selectivity toward H2 S. Furthermore, AuNPs/4-AA responds to H2 S within 1 min with a 0.1 µM level of sensitivity. In particular, our SERS method can be utilized to monitor the endogenous H2 S generated in living glioma cells, demonstrating its great promise in studies of pathophysiological pathways involving H2 S.


Assuntos
Glioma/metabolismo , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/metabolismo , Análise Espectral Raman/métodos , Animais , Azidas/química , Linhagem Celular Tumoral , Ouro/química , Humanos , Nanopartículas Metálicas/química , Ratos
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123665, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38029600

RESUMO

To effectively extract target analytes from complex sample surfaces is of great significance for the practical application of surface-enhanced Raman scattering (SERS) spectroscopy. A plasmonic substrate with multiple "hotspots" for highly sensitive detection of pesticide residues were prepared successfully by assembling gold nanoparticles on buckypaper (AuNPs-BP). The substrate exhibited high SERS enhancement and excellent detection sensitivity, with a detection limit (LOD) of 2.03 × 10-11 M and 6.88 × 10-12 M for the probe molecule R6G and MB, respectively. Combined with 3D finite-difference time-domain (3D-FDTD) simulation, the excellent SERS performance of the substrate was attributed to the enhancement of the electromagnetic field around the "hotspots". Additionally, the substrates exhibited excellent flexibility, allowing easy contact with irregular surfaces and facilitating the collection of target molecules on the sample surface. Using a portable Raman spectrometer, the substrate achieved in situ analysis of chlorpyrifos residues on peach, with a LOD as low as 6.8 × 10-11 M. The method showed high accuracy, with a recovery value ranging from 94.2 % to 115.5 %. The results indicate that the substrate has great potential for rapid and highly sensitive detection of pollutants, especially on non-planar surfaces.

16.
Talanta ; 276: 126291, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776774

RESUMO

Developing a Surface-enhanced Raman spectroscopy (SERS) method with excellent detecting ability, good recyclability and analyzing multiple pollutants rapidly are critical for evaluation of water quality in emergency pollution affairs. While constructing a multifunctional substrate with these characteristics to realize the application of SERS in water quality monitoring remains a challenge. In this work, a reusable Au@R-Fe3O4/g-C3N4 SERS substrate is prepared by loading Au nanoparticles (Au NPs) on Fe3O4 nanorings (R-Fe3O4) and the formed Au@R-Fe3O4 is further combined with g-C3N4 nanosheets through a simple electrostatic assembly method. The Au@R-Fe3O4/g-C3N4 nanocomposite presents multifunction of magnetic enrichment, SERS signal enhancement, multiple pollutants analyzing, and photocatalytic activity, which achieves quantitative detection of rhodamine B (RhB), tetracycline hydrochloride (TC), and 4-chlorophenol (4-CP), with detection limits of 5.30 × 10-9, 7.50 × 10-8, 7.69 × 10-8 mol/L, respectively. Furthermore, the recyclable detection capability of Au@R-Fe3O4/g-C3N4 for multi components is demonstrated by the strong SERS signal after 9 cycles of "detection-degradation" processes. Combined with good uniformity and stability, this SERS method based on Au@R-Fe3O4/g-C3N4 substrate provides a new strategy for the multi-pollutants detection and degradation in water environment.

17.
Anal Chim Acta ; 1312: 342762, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834277

RESUMO

Mucin1 (MUC1) is an extensively glycosylated transmembrane protein that is widely distributed and overexpressed on the surface of cancer cells, playing an important role in tumor occurrence and metastasis. Therefore, highly sensitive detection of MUC1 is of great significance for early diagnosis, treatment monitoring, and prognosis of cancer. Here, an ultra-sensitive photoelectrochemical (PEC) sensing platform was developed based on an aptamer amplification strategy for highly selective and sensitive detection of MUC1 overexpressed in serum and on cancer cell surfaces. The sensing platform utilized copper phthalocyanine to fabricate porous organic polymers (CuPc POPs), and was effectively integrated with g-C3N4/MXene to form a ternary heterojunction material (g-C3N4/MXene/CuPc POPs). This material effectively improved electron transfer capability, significantly enhanced light utilization, and greatly enhanced photoelectric conversion efficiency, resulting in a dramatic increase in photocurrent response. MUC1 aptamer 1 was immobilized on a chitosan-modified photoelectrode for the selective capture of MUC1 or MCF-7 cancer cells. When the target substance was present, MUC1 aptamer 2 labeled with methylene blue (MB) was specifically adsorbed on the electrode surface, leading to enhanced photocurrent. The concentration of MUC1 directly correlated with the number of MB molecules attracted to the electrode surface, establishing a linear relationship between photocurrent intensity and MUC1 concentration. The PEC biosensor exhibited excellent sensitivity for MUC1 detection with a wide detection range from 1 × 10-7 to 10 ng/mL and a detection limit of 8.1 ag/mL. The detection range for MCF-7 cells was from 2 × 101 to 2 × 106 cells/mL, with the capability for detecting single MCF-7 cells. The aptamer amplification strategy significantly enhanced PEC performance, and open up a promising platform to establish high selectivity, stability, and ultrasensitive analytical techniques.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Eletroquímicas , Mucina-1 , Polímeros , Mucina-1/análise , Humanos , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Células MCF-7 , Porosidade , Polímeros/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Indóis/química , Processos Fotoquímicos , Compostos Organometálicos/química
18.
Chem Sci ; 15(9): 3174-3181, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425507

RESUMO

Zirconium-based metal-organic frameworks (Zr-MOFs) have been extensively studied due to their very rich structural chemistry. The combination of nearly unlimited carboxylic acid-based linkers and Zr6 clusters with multiple connectivities has led to diverse structures and specific properties of resultant Zr-MOFs. Herein, we demonstrate the successful use of reticular chemistry to construct two novel Zr-MOFs, HIAM-4040 and HIAM-4040-OH, with zfu topology. Based on a thorough structural analysis of (4,4)-connected lvt-type Zr-tetracarboxylate frameworks and a judicious linker design, we have obtained the first example of a Zr-pentacarboxylate framework featuring unprecedented 5-connected organic linkers and 5-connected Zr6 clusters. Compared with HIAM-4040, a larger Stokes shift is achieved in HIAM-4040-OH via hydroxyl group induced excited-state intramolecular proton transfer (ESIPT). HIAM-4040-OH exhibits high chemical and thermal stability and is used for HClO detection in aqueous solution with excellent sensitivity and selectivity.

19.
Anal Chem ; 85(20): 9549-55, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24047198

RESUMO

A novel surface-enhanced Raman scattering (SERS) nanosensor was developed by modifying oxidized cytochrome c (Cyt c) on gold nanoparticles (Au NPs) for the sensitive and selective determination of intracellular superoxide anion radical (O2(•-)). On the basis of the differences in the SERS spectra between the oxidized and reduced form of Cyt c, this nanosensor could be employed to investigate O2(•-) concentration by measuring the SERS spectra of the reduced Cyt c. Using this SERS nanosensor, a detection limit of 1.0 × 10(-8) M for O2(•-) could be attained. Additionally, the selectivity of the SERS nanosensor for O2(•-) was examined, showing that other reactive oxygen species (ROS) and biologically relevant species did not influence the detection of O2(•-). More importantly, the nanosensor could be delivered to the living HeLa and normal human liver cells and permitted the concentration of O2(•-) to be monitored in real time and in a noninvasive manner, which indicates that this nanosensor will be suitable for the qualitative and quantitative analysis of O2(•-) in biosystems, thus leading to a greater understanding of oxidative-stress-related diseases at a cellular level.


Assuntos
Técnicas Biossensoriais/métodos , Citocromos c/metabolismo , Ouro/química , Espaço Intracelular/química , Nanotecnologia/métodos , Análise Espectral Raman , Superóxidos/análise , Citocromos c/química , Células HeLa , Humanos , Fígado/citologia , Nanopartículas Metálicas/química , Modelos Moleculares , Conformação Proteica
20.
Analyst ; 138(5): 1523-8, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23340517

RESUMO

A facile one-step approach to fabricate substrates for surface-enhanced Raman scattering (SERS) detection of polycyclic aromatic hydrocarbons (PAHs) was explored by reduction of silver nitrate with humic acids (HAs). This simple process readily delivers silver nanoparticles (Ag NPs) decorated with HAs (HAs-Ag NPs), and an average diameter of 50 nm. More importantly, it compares favorably to Ag NPs prepared by the usual sodium citrate method, HAs-Ag NPs show excellent SERS activity for PAHs and display a remarkable capacity to absorb aromatic molecules through presumed π-π stacking interactions. Furthermore, the HAs-Ag NPs displayed good SERS stability, possibly due to the fact that HAs form loose coils or networks around the nanoparticles thus preventing aggregation. The investigation of qualitative and quantitative detection of PAHs on HAs-Ag NPs indicate that different PAHs can be distinguished easily from their discriminant SERS peaks, and the SERS responses exhibited a linear dependence on PAH concentrations over two orders of magnitude, with tens of nM detection limits. In addition, the HAs-Ag NPs performed well in the multicomponent analysis of PAH mixtures by the SERS technique without pre-separation.


Assuntos
Substâncias Húmicas/análise , Nanopartículas/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Prata/química , Análise Espectral Raman/métodos , Poluentes Químicos da Água/análise , Limite de Detecção , Nanopartículas/ultraestrutura , Oxirredução , Tamanho da Partícula , Esgotos/análise , Nitrato de Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA