Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(18): e2007746, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33738971

RESUMO

Organic solar cells (OSCs) can achieve greatly improved power conversion efficiency (PCE) by incorporating suitable additives in active layers. Their structure design often faces the challenge of operation generality for more binary blends. Herein, a simple dithieno[3,2-b:2',3'-d]pyrrole-rhodanine molecule (DR8) featuring high compatibility with polymer donor PM6 is developed as a cost-effective third component. By employing classic ITIC-like ITC6-4Cl and Y6 as model nonfullerene acceptors (NFAs) in PM6-based binary blends, DR8 added PM6:ITC6-4Cl blends exhibit significantly promoted energy transfer and exciton dissociation. The PM6:ITC6-4Cl:DR8 (1:1:0.1, weight ratio) OSCs contribute an exciting PCE of 14.94% in comparison to host binary devices (13.52%), while PM6:Y6:DR8 (1:1.2:0.1) blends enable 16.73% PCE with all simultaneously improved photovoltaic parameters. To the best of the knowledge, this performance is among the best for ternary OSCs with simple small molecular third components in the literature. More importantly, DR8-added ternary OSCs exhibit much improved device stability against thermal aging and light soaking over binary ones. This work provides new insight on the design of efficient third components for OSCs.

2.
ACS Appl Mater Interfaces ; 12(19): 21633-21640, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32314906

RESUMO

In this study, an efficient ternary bulk-heterojunction (BHJ) organic solar cell (OSC) is demonstrated by incorporating two acceptors, PC61BM and ITC6-4F, with a polymer donor (PM6). This reveals that the addition of PC61BM not only enhances the electron mobility of the derived BHJ blend but also facilitates exciton dissociation, resulting in a more balanced charge transport alongside with reduced trap-assisted charge recombination. Consequently, as compared to the pristine PM6/ITC6-4F device, the optimal ternary OSC is revealed to deliver an improved power conversion efficiency (PCE) of 15.11% with a boosted JSC, VOC, and fill factor (FF) simultaneously. The resultant VOC and FF are among the highest values recorded in the literature for the ternary OSCs with a PCE exceeding 15%. This result thus suggests that besides improving the charge transport characteristics in devices, incorporating a fullerene derivative as part of the acceptor can also improve the resultant VOC, which can reduce the energy loss to realize efficient organic photovoltaics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA