RESUMO
Selective catalytic reduction (SCR) of NOx with NH3 is the most efficient technology for NOx emissions control, but the activity of catalysts decreases exponentially with the decrease in reaction temperature, hindering the application of the technology in low-temperature SCR to treat industrial stack gases. Here, we present an industrially practicable technology to significantly enhance the SCR activity at low temperatures (<250 °C). By introducing an appropriate amount of O3 into the simulated stack gas, we find that O3 can stoichiometrically oxidize NO to generate NO2, which enables NO reduction to follow the fast SCR mechanism so as to accelerate SCR at low temperatures, and, in particular, an increase in SCR rate by more than four times is observed over atom-pair V1-W1 active sites supported on TiO2(001) at 200 °C. Using operando SCR tests and in situ diffuse reflectance infrared Fourier transform spectra, we reveal that the introduction of O3 allows SCR to proceed along a NH4NO3-mediated Langmuir-Hinshelwood model, in which the adsorbed nitrate species speed up the re-oxidation of the catalytic sites that is the rate-limiting step of SCR, thus leading to the enhancement of activity at low temperatures. This technology could be applicable in the real stack gas conditions because O3 exclusively oxidizes NO even in the co-presence of SO2 and H2O, which provides a general strategy to improve low-temperature SCR efficacy from another perspective beyond designing catalysts.
Assuntos
Amônia , Gases , Domínio Catalítico , Amônia/química , Oxirredução , Temperatura , CatáliseRESUMO
Environmentally benign CeO2-WO3/TiO2 catalysts are promising alternatives to commercial toxic V2O5-WO3/TiO2 for controlling NOx emission via selective catalytic reduction (SCR), but the insufficient catalytic activity of CeO2-WO3/TiO2 catalysts is one of the obstacles in their applications because of a lack of an in-depth understanding of the CeO2-WO3 interactions. Herein, we design a Ce1-W1/TiO2 model catalyst by anchoring Ce1-W1 atom pairs on anatase TiO2(001) to investigate the synergy between Ce and W in SCR. A series of characterizations combined with density functional theory calculations and in situ diffuse-reflectance infrared Fourier-transform experiments reveal that there exists a strong electronic interaction within Ce1-W1 atom pairs, leading to a much better SCR performance of Ce1-W1/TiO2 compared with that of Ce1/TiO2 and W1/TiO2. The Ce1-W1 synergy not only shifts down the lowest unoccupied states of Ce1 near the Fermi level, thus enhancing the abilities in adsorbing and oxidizing NH3 but also makes the frontier orbital electrons of W1 delocalized, thus accelerating the activation of O2. The deep insight of the Ce-W synergy may assist in the design and development of efficient catalysts with an SCR activity as high as or even higher than V2O5-WO3/TiO2.
Assuntos
Amônia , Óxidos de Nitrogênio , Catálise , Óxidos , TitânioRESUMO
Effective adsorption and speedy surface reactions are vital requirements for efficient active sites in catalysis, but it remains challenging to maximize these two functions simultaneously. We present a solution to this issue by designing a series of atom-pair catalytic sites with tunable electronic interactions. As a case study, NO selective reduction occurring on V1 -W1 /TiO2 is chosen. Experimental and theoretical results reveal that the synergistic electron effect present between the paired atoms enriches high-energy spin charge around the Fermi level, simultaneously rendering reactant (NH3 or O2 ) adsorption more effective and subsequent surface reactions speedier as compared with single V or W atom alone, and hence higher reaction rates. This strategy enables us to rationally design a high-performance V1 -Mo1 /TiO2 catalyst with optimized vanadium(IV)-molybdenum(V) electronic interactions, which has exceptional activity significantly higher than the commercial or reported catalysts.
RESUMO
Although ceria-based catalysts serve as an appealing alternative to traditional V2O5-based catalysts for selective catalytic reduction (SCR) of NOx with NH3, the inevitable deactivation caused by SO2 at low temperatures severely hampers the ceria-based catalysts to efficiently control NOx emissions from SO2-containing stack gases. Here, we rationally design a strong sulfur-resistant ceria-based catalyst by tuning the electronic structures of ceria highly dispersed on acidic MoO3 surfaces. By using Ce L3-edge X-ray absorption near edge structure spectra in conjunction with various surface and bulk structural characterizations, we report that the sulfur resistance of the catalysts is closely associated with the electronic states of ceria, particularly expressed by the Ce3+/Ce4+ ratio related to the size of the ceria particles. As the Ce3+/Ce4+ ratio increases up to or over 50%, corresponding to CeO2/MoO3(x %, x ≤ 2.1) with the particle size of approximately 4 nm or less, the non-bulk electronic states of ceria appear, where the catalysts start to show strong sulfur resistance. This work could provide a new strategy for designing sulfur-resistant ceria-based SCR catalysts for controlling NOx emissions at low temperatures.
Assuntos
Amônia , Enxofre , Catálise , Eletrônica , TemperaturaRESUMO
Catalytic activity of metal particles is reported to originate from the appearance of nonmetallic states, but conductive metallic particles, as an electron reservoir, should render electron delivery between reactants more favorably so as to have higher activity. We present that metallic rhodium particle catalysts are highly active in the low-temperature oxidation of carbon monoxide, whereas nonmetallic rhodium clusters or monoatoms on alumina remain catalytically inert. Experimental and theoretical results evidence the presence of electronic communications in between vertex atom active sites of individual metallic particles in the reaction. The electronic communications dramatically lower apparent activation energies via coupling two electrochemical-like half-reactions occurring on different active sites, which enable the metallic particles to show turnover frequencies at least four orders of magnitude higher than the nonmetallic clusters or monoatoms. Similar results are found for other metallic particle catalysts, implying the importance of electronic communications between active sites in heterogeneous catalysis.
RESUMO
We tune the valence state of single Au atoms anchored on CeO2(100) by treating the catalyst in H2 at different temperatures and obtain a series of Au1/CeO2(100). The transition from Au1+0.9 to Au1+0.3 leads to an enhancement of the CO oxidation activity of Au1/CeO2(100) by one order of magnitude. This work is of significance for an in-depth understanding of reaction mechanisms and rational design of high-performance catalysts.
RESUMO
Atomic metal wires have great promise for practical applications in devices due to their unique electronic properties. Unfortunately, such atomic wires are extremely unstable. Here we fabricate stable atomic silver wires (ASWs) with appreciably unoccupied states inside the parallel tunnels of α-MnO2 nanorods. These unoccupied Ag 4d orbitals strengthen the Ag-Ag bonds, greatly enhancing the stability of ASWs while the presence of delocalized 5s electrons makes the ASWs conducting. These stable ASWs form a coherently oriented three-dimensional wire array of over 10 nm in width and up to 1 µm in length allowing us to connect it to nano-electrodes. Current-voltage characteristics of ASWs show a temperature-dependent insulator-to-metal transition, suggesting that the atomic wires could be used as thermal electrical devices.
RESUMO
Single-ion copper doping significantly improves the catalytic activity of α-MnO2 in CO oxidation, reducing the apparent activation energy to â¼0.3 eV via strong electronic interactions between the frontier orbitals of copper ions and manganese ions.
RESUMO
High-performance catalysts are extremely required for controlling NO emission via selective catalytic reduction (SCR), and to acquire a common structural feature of catalytic sites is one key prerequisite for developing such catalysts. We design a single-atom catalyst system and achieve a generic characteristic of highly active SCR catalytic sites. A single-atom Mo1/Fe2O3 catalyst is developed by anchoring single acidic Mo ions on (001) surfaces of reducible α-Fe2O3, and the individual Mo ion and one neighboring Fe ion are thus constructed as one dinuclear site. As the number of the dinuclear sites increases, SCR rates increase linearly but the apparent activation energy remains almost unchanged, evidencing the identity of the dinuclear active sites. We further design W1/Fe2O3 and Fe1/WO3 and find that tuning acid or/and redox properties of dinuclear sites can alter SCR rates. Therefore, this work provides a design strategy for developing improved SCR catalysts via optimizing acid-redox properties of dinuclear sites.
RESUMO
A rationale for designing selective NO reduction catalysts with strong alkali resistance was proposed, based on extensive studies of a variety of catalysts with common characteristics of separate catalytically active sites and alkali-trapping sites.
RESUMO
Metal-support electronic interactions were investigated in CO oxidation by using a Pd/CeO2 model catalyst with well-defined interfaces, and electron transfer from Pd cubes to CeO2 nanorods through interfaces triggered CO oxidation at low temperature where standalone Pd and CeO2 are inert.