RESUMO
Ischemic stroke (IS) is a significant and potentially life-threatening disease with limited treatment options, often resulting in severe disability. Bone marrow stromal cells (BMSCs) transplantation has exhibited promising neuroprotection following cerebral ischemia-reperfusion injury (CIRI). However, the effectiveness is hindered by their low homing rate when administered through the vein. In this study, we aimed to enhance the homing ability of BMSCs through lentivirus transfection to express fucosyltransferase 7. This glycosylation engineered CD44 on BMSCs to express hematopoietic cell E-selectin/L-selectin ligand (HCELL), which is the most potent E-selectin ligand. Following enforced HCELL expression, the transplantation of BMSCs was then evaluated in a middle cerebral artery occlusion (MCAO) model. Results showed that HCELL+BMSCs significantly ameliorated neurological deficits and reduced the volume of cerebral infarction. Furthermore, the transplantation led to a decrease in apoptosis by up-regulating BCL-2 and down-regulating BAX, also reduced the mRNA levels of inflammatory factors, such as interleukin-1ß (IL-1ß), IL-2, IL-6 and tumor necrosis factor-alpha (TNF-α) in the ischemic brain tissue. Notably, enforced HCELL expression facilitated the migration of BMSCs towards cerebral ischemic lesions and their subsequent transendothelial migration through the up-regulation of PTGS-2, increased production of PGE2 and activation of VLA-4. In summary, our study demonstrates that transplantation of HCELL+BMSCs effectively alleviates CIRI, and that enforced HCELL expression enhances the homing of BMSCs to cerebral ischemic lesions and their transendothelial migration via PTGS-2/PGE2/VLA-4. These findings indicate that enforced expression of HCELL on BMSCs could serve as a promising therapeutic strategy for the treatment of ischemic stroke.
RESUMO
OBJECTIVES: Although Mesencephalic astrocyte-derived neurotrophic factor (MANF) shows protection in multiple cells, the role of circulating MANF in patients with acute ischemic stroke (AIS) and transient ischemic attack (TIA) remains unclear. Here, we aimed to explore the value of circulating MANF levels in cerebral ischemic events. MATERIALS AND METHODS: Using a rat cerebral ischemic model, MANF expression in ischemic brains and serum was detected. 50 AIS patients, 56 TIA patients and 48 controls were enrolled, and MANF mRNA, inflammatory cytokines and MANF concentrations in serum and different blood cell types were detected. The National Institutes of Health Stroke Scale (NIHSS) score and Alberta Stroke Program Early CT Score (ASPECTS) were used to evaluate stroke severity. Cerebrovascular recurrence within 90 d was documented during TIA follow-up. RESULTS: MANF expression increased at 2h, peaking at 24h and decreased to baseline at 7d in rat ischemic brains and serum. Serum MANF concentrations increased at 24h and 7d in AIS patients compared to controls and were correlated with NIHSS score, ASPECTS and inflammatory cytokines. MANF protein was present in blood cells, while MANF mRNA levels did not differ between AIS patients and controls. MANF levels revealed a good value to diagnose TIA with area under the curve (AUC) of 0.949 (95% CI: 0.9093-0.9892). MANF levels were lower in TIA patients with recurrence compared to non-recurrence patients. The AUC for MANF to predict a re-event was 0.80 (95% CI: 0.6746-0.9282). CONCLUSIONS: Serum MANF levels correlate with neuroprotection, stroke severity, inflammation, and TIA recurrence.
Assuntos
Ataque Isquêmico Transitório , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Ratos , AVC Isquêmico/diagnóstico , Ataque Isquêmico Transitório/diagnóstico , Ataque Isquêmico Transitório/metabolismo , Astrócitos/metabolismo , Fatores de Crescimento Neural/genética , Acidente Vascular Cerebral/genética , Citocinas/metabolismo , RNA Mensageiro/metabolismoRESUMO
Glioma, like most cancers, possesses a unique bioenergetic state of aerobic glycolysis known as the Warburg effect, which is a dominant phenotype of most tumor cells. Glioma tumors exhibit high glycolytic metabolism with increased lactate production. Data derived from the gene expression profiling interactive analysis (GEPIA) database show that pyruvate dehydrogenase kinase 1 (PDK1) is significantly highly expressed in glioma tissues compared with corresponding normal tissues. PDK1 is a key enzyme in the transition of glycolysis to tricarboxylic acid cycle, via inactivating PDH and converting oxidative phosphorylation to Warburg effect, resulting in increment of lactate production. Silencing of PDK1 expression resulted in reduced lactate and ATP, accumulation of ROS, mitochondrial damage, decreased cell growth, and increased cell apoptosis. Aberrant expression of miR-128 has been observed in many human malignancies. Mechanistically, we discover that overexpressed miR-128-3p disturbs the Warburg effect in glioma cells via reducing PDK1. Our experiments confirmed that the miR-128-3p/PDK1 axis played a pivotal role in cancer cell metabolism and growth. Collectively, these findings suggest that therapeutic strategies to modulate the Warburg effect, such as targeting of PDK1, might act as a potential therapeutic target for glioma treatment.
Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , MicroRNAs/genética , Mitocôndrias/patologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Trifosfato de Adenosina/metabolismo , Apoptose/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/patologia , Humanos , Ácido Láctico/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Background: Tumor necrosis factor-stimulated gene-6 (TSG-6) is a multifunctional, anti-inflammatory, and protective protein, while the association between TSG-6 and acute ischemic stroke (AIS) remains unclear in humans. This study aims to investigate the potential diagnostic and short-term prognosis predictive values of TSG-6 in non-cardioembolic AIS. Methods: A total of 134 non-cardioembolic AIS patients within 24 h after AIS onset and 40 control subjects were recruited. Using an AIS dataset from the Gene Expression Omnibus database and setting the median expression level of TNFAIP6 as the cutoff point, data were divided into TNFAIP6-high and TNFAIP6-low expression groups. Differently expressed genes (DEGs) were extracted to perform gene enrichment analysis and protein-protein interaction (PPI) network. Baseline data were analyzed in a four-group comparison plotted as plasma TSG-6 concentration median and 25th/75th percentiles. The correlative factors of 3-month outcome were evaluated by logistic regression. TSG-6 concentrations and TSG-6-to-interleukin-8 ratios were compared in a block design. A receiver-operating characteristic curve was used to analyze the detective value of TSG-6 and 3-month prognosis predictive values of TSG-6 and TSG-6-to-interleukin-8 ratio. Results: Non-cardioembolic AIS patients had significantly higher plasma TSG-6 levels than control subjects (P < 0.0001). The large-artery atherosclerosis group had significantly higher TSG-6 levels than the small-artery occlusion group (P = 0.0184). Seven hundred and eighty-two DEGs might be both AIS-related and TNFAIP6-correlated genes, and 17 targets were deemed AIS-related being closely relevant to TNFAIP6. Interleukin-8 was selected for further study. The National Institutes of Health Stroke Scale and the Acute Stroke Registry and Analysis of Lausanne scores at admission, lesion volume, neutrophil count, neutrophil-to-lymphocyte ratio, and interleukin-8 level were positively correlated with TSG-6 level, respectively (P < 0.0001). The unfavorable outcome group had meaningfully higher TSG-6 levels (P < 0.0001) and lower TSG-6-to-interleukin-8 ratios (P < 0.0001) than the favorable outcome group. After adjusting for confounding variables, elevated TSG-6 levels remained independently associated with 3-month poor prognosis of non-cardioembolic AIS (P = 0.017). In non-cardioembolic AIS, the cutoff values of TSG-6 concentration for detection and 3-month prognosis prediction and the TSG-6-to-interleukin-8 ratio for the 3-month prognosis prediction were 8.13 ng/ml [AUC, 0.774 (0.686-0.861); P < 0.0001], 10.21 ng/ml [AUC, 0.795 (0.702-0.887); P < 0.0001], and 1.505 [AUC, 0.873 (0.795-0.951); P < 0.0001]. Conclusions: Plasma TSG-6 concentration was a novel indicator for non-cardioembolic AIS diagnosis and 3-month prognosis. Elevated TSG-6-to-interleukin-8 ratio might suggest a 3-month favorable outcome.
Assuntos
Moléculas de Adesão Celular , AVC Isquêmico , Acidente Vascular Cerebral , Moléculas de Adesão Celular/sangue , Humanos , Interleucina-8/genética , Prognóstico , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/genéticaRESUMO
Background: Ischemic stroke (IS) is a common and serious neurological disease, and multiple pathways of cell apoptosis are implicated in its pathogenesis. Recently, extensive studies have indicated that pyroptosis is involved in various diseases, especially cerebrovascular diseases. However, the exact mechanism of interaction between pyroptosis and IS is scarcely understood. Thus, we aimed to investigate the impact of pyroptosis on IS-mediated systemic inflammation. Methods: First, the RNA regulation patterns mediated by 33 pyroptosis-related genes identified in 20 IS samples and 20 matched-control samples were systematically evaluated. Second, a series of bioinformatics algorithms were used to investigate the contribution of PRGs to IS pathogenesis. We determined three composition classifiers of PRGs which potentially distinguished healthy samples from IS samples according to the risk score using single-variable logistic regression, LASSO-Cox regression, and multivariable logistic regression analyses. Third, 20 IS patients were classified by unsupervised consistent cluster analysis in relation to pyroptosis. The association between pyroptosis and systemic inflammation characteristics was explored, which was inclusive of immune reaction gene sets, infiltrating immunocytes and human leukocyte antigen genes. Results: We identified that AIM2, SCAF11, and TNF can regulate immuno-inflammatory responses after strokes via the production of inflammatory factors and activation of the immune cells. Meanwhile, we identified distinct expression patterns mediated by pyroptosis and revealed their immune characteristics, differentially expressed genes, signaling pathways, and target drugs. Conclusion: Our findings lay a foundation for further research on pyroptosis and IS systemic inflammation, to improve IS prognosis and its responses to immunotherapy.
RESUMO
BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) are capable of shifting the microglia/macrophages phenotype from M1 to M2, contributing to BMSCs-induced brain repair. However, the regulatory mechanism of BMSCs on microglia/macrophages after ischemic stroke is unclear. Recent evidence suggests that mesencephalic astrocyte-derived neurotrophic factor (MANF) and platelet-derived growth factor-AA (PDGF-AA)/MANF signaling regulate M1/M2 macrophage polarization. AIM: To investigate whether and how MANF or PDGF-AA/MANF signaling influences BMSCs-mediated M2 polarization. METHODS: We identified the secretion of MANF by BMSCs and developed transgenic BMSCs using a targeting small interfering RNA for knockdown of MANF expression. Using a rat middle cerebral artery occlusion (MCAO) model transplanted by BMSCs and BMSCs-microglia Transwell coculture system, the effect of BMSCs-induced downregulation of MANF expression on the phenotype of microglia/macrophages was tested by Western blot, quantitative reverse transcription-polymerase chain reaction, and immunofluorescence. Additionally, microglia were transfected with mimics of miR-30a*, which inï¬uenced expression of X-box binding protein (XBP) 1, a key transcription factor that synergized with activating transcription factor 6 (ATF6) to govern MANF expression. We examined the levels of miR-30a*, ATF6, XBP1, and MANF after PDGF-AA treatment in the activated microglia. RESULTS: Inhibition of MANF attenuated BMSCs-induced functional recovery and decreased M2 marker production, but increased M1 marker expression in vivo or in vitro. Furthermore, PDGF-AA treatment decreased miR-30a* expression, had no influence on the levels of ATF6, but enhanced expression of both XBP1 and MANF. CONCLUSION: BMSCs-mediated MANF paracrine signaling, in particular the PDGF-AA/miR-30a*/XBP1/MANF pathway, synergistically mediates BMSCs-induced M2 polarization.
RESUMO
OBJECTIVES: We aimed to investigate the prevalence of restless leg syndrome (RLS) and exploring the contributing factors that affect the development of RLS in Parkinson's disease (PD) patients. METHODS: A cross-sectional study was conducted consisting of 178 consecutive PD patients from our hospital between October 2015 and August 2016. We divided the participants into two groups, which were PD with RLS and PD with non-RLS. Then, we recorded their demographics and clinical data to draw a comparison between PD with RLS and PD with non-RLS. RESULTS: 23 (12.92%) were diagnosed with RLS among all the enrolled PD patients. Unified Parkinson's Disease Rating Scale III (UPDRS III) and Hamilton Depression Scale (HAMD) scores, probable rapid eye movement sleep behavior disorder (PRBD), and daily levodopa equivalent dose (LED) in the PD with the RLS group were significantly different from those in the PD with the non-RLS group. Daily LED and the scores of UPDRS III and HAMD in PD patients with RLS were all higher than those in PD patients with non-RLS. PRBD, daily LED, and HAMD scores were significantly independent factors contributing to the development of RLS (OR = 4.678, 95% CI 1.372~15.944, P = 0.014; OR = 1.003, 95% CI 1.001~1.005, P = 0.019; OR = 1.094, 95% CI 1.002~1.193, P = 0.045). The severity of RLS was positively correlated with the duration of PD and daily LED (r = 0.438, P = 0.036; r = 0.637, P = 0.001). CONCLUSION: PRBD existence, daily LED, and HAMD scores are independent factors for developing RLS in PD patients. PRBD existence is firstly proposed as an independent factor in developing RLS among PD patients. RLS severity in PD patients are positively associated with the duration of PD and daily LED.