Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 43: 125-130, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26150170

RESUMO

IgE-mediated food allergy is a developing global health problem with prevalence rising at alarmingly fast rates. In this review, we discuss the interplay between genetics, epigenetics, and environmental exposures in the pathogenesis of food allergies. We aim to highlight the most recent evidence that suggests how epigenetic control may mediate genetic susceptibility of food allergies. We also examine how epigenetic modifications may be the key in explaining how environmental factors modulate and modify gene expression, leading to the dysregulation of immune tolerance and consequently, the development of food allergies. The emerging epigenetic paradigm in food allergies is likely to provide new mechanistic insight into food allergy risk and development as well as shape our therapeutic and preventive strategies.


Assuntos
Exposição Ambiental/efeitos adversos , Epigênese Genética/genética , Hipersensibilidade Alimentar/genética , Predisposição Genética para Doença/genética , Imunoterapia/métodos , Humanos , Tolerância Imunológica/imunologia , Imunoglobulina E/imunologia
2.
Elife ; 102021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34085929

RESUMO

Sleep is a conserved and essential behavior, but its mechanistic and functional underpinnings remain poorly defined. Through unbiased genetic screening in Drosophila, we discovered a novel short-sleep mutant we named argus. Positional cloning and subsequent complementation, CRISPR/Cas9 knock-out, and RNAi studies identified Argus as a transmembrane protein that acts in adult peptidergic neurons to regulate sleep. argus mutants accumulate undigested Atg8a(+) autophagosomes, and genetic manipulations impeding autophagosome formation suppress argus sleep phenotypes, indicating that autophagosome accumulation drives argus short-sleep. Conversely, a blue cheese neurodegenerative mutant that impairs autophagosome formation was identified independently as a gain-of-sleep mutant, and targeted RNAi screens identified additional genes involved in autophagosome formation whose knockdown increases sleep. Finally, autophagosomes normally accumulate during the daytime and nighttime sleep deprivation extends this accumulation into the following morning, while daytime gaboxadol feeding promotes sleep and reduces autophagosome accumulation at nightfall. In sum, our results paradoxically demonstrate that wakefulness increases and sleep decreases autophagosome levels under unperturbed conditions, yet strong and sustained upregulation of autophagosomes decreases sleep, whereas strong and sustained downregulation of autophagosomes increases sleep. The complex relationship between sleep and autophagy suggested by our findings may have implications for pathological states including chronic sleep disorders and neurodegeneration, as well as for integration of sleep need with other homeostats, such as under conditions of starvation.


Assuntos
Autofagossomos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mutação com Ganho de Função , Macroautofagia/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neurônios , Sono/genética , Animais , Animais Geneticamente Modificados , Autofagossomos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genótipo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fenótipo , Fatores de Tempo , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA