Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hum Evol ; 134: 102638, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31446971

RESUMO

The migration of anatomically modern humans (AMH) from Africa to every inhabitable continent included their dispersal through Island Southeast Asia (ISEA) to Australia. Significantly, this involved overwater dispersal through the Lesser Sunda Islands between Sunda (continental Southeast Asia) and Sahul (Australia and New Guinea). However, the timing and direction of this movement is still debated. Here, we report on human skeletal material recovered from excavations at two rockshelters, known locally as Tron Bon Lei, on Alor Island, Indonesia. The remains, dated to the Late Pleistocene, are the first anatomically modern human remains recovered in Wallacea dated to this period and are associated with cultural material demonstrating intentional burial. The human remains from Tron Bon Lei represent a population osteometrically distinct from Late Pleistocene Sunda and Sahul AMH. Instead, morphometrically, they appear more similar to Holocene populations in the Lesser Sundas. Thus, they may represent the remains of a population originally from Sunda whose Lesser Sunda Island descendants survived into the Holocene.


Assuntos
Fósseis/anatomia & histologia , Migração Humana , Crânio/anatomia & histologia , Arqueologia , Humanos , Indonésia
2.
J Hazard Mater ; 410: 124553, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33223312

RESUMO

Knowledge of the behavior of technologically enhanced naturally occurring radioactive materials derived through the decay of U and its daughter products, and their subsequent fractionation, mobilization and retention, is essential to develop effective mitigation strategies and long-term radiological risk prediction. In the present study, multiple state-of-the-art, spatially resolved micro-analytical characterization techniques were combined to systematically track the liberation and migration of radionuclides (RN) from U-bearing phases in an Olympic Dam Cu flotation concentrate following sulfuric-acid-leach processing. The results highlighted the progressive dissolution of U-bearing minerals (mainly uraninite) leading to the release, disequilibrium and ultimately upgrade of daughter RN from the parent U. This occurred in conjunction with primary Cu-Fe-sulfide minerals undergoing coupled-dissolution reprecipitation to the porous secondary Cu-mineral, covellite. The budget of RN remaining in the leached concentrate was split between RN still hosted in the original U-bearing minerals, and RN that were mobilized and subsequently sorbed/precipitated onto porous covellite and auxiliary gangue mineral phases (e.g. barite). Further grinding of the flotation concentrate prior to sulfuric-acid-leach led to dissolution of U-bearing minerals previously encapsulated within Cu-Fe-sulfide minerals, resulting in increased release and disequilibrium of daughter RN, and causing further RN upgrade. The various processes that affect RN (mobility, sorption, precipitation) and sulfide minerals (coupled-dissolution reprecipitation and associated porosity generation) occur continuously within the hydrometallurgical circuit, and their interplay controls the rapid and highly localized enrichment of RN. The innovative combination of tools developed here reveal the heterogeneous distribution and fractionation of the RN in the ores following hydrometallurgical treatment at nm to cm-scales in exquisite detail. This approach provides an effective blueprint for understanding of the mobility and retention of U and its daughter products in complex anthropogenic and natural processes in the mining and energy industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA