Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 12(5): e0190821, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544278

RESUMO

Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed in record time and show excellent efficacy and effectiveness against coronavirus disease 2019 (COVID-19). However, currently approved vaccines cannot meet the global demand. In addition, none of the currently used vaccines is administered intranasally to potentially induce mucosal immunity. Here, we tested the safety and immunogenicity of a second-generation SARS-CoV-2 vaccine that includes a stabilized spike antigen and can be administered intranasally. The vaccine is based on a live Newcastle disease virus vector expressing a SARS-CoV-2 spike protein stabilized in a prefusion conformation with six beneficial proline substitutions (AVX/COVID-12-HEXAPRO; Patria). Immunogenicity testing in the pig model showed that both intranasal and intramuscular application of the vaccine as well as a combination of the two induced strong serum neutralizing antibody responses. Furthermore, substantial reactivity to B.1.1.7, B.1.351, and P.1 spike variants was detected. Finally, no adverse reactions were found in the experimental animals at any dose level or delivery route. These results indicate that the experimental vaccine AVX/COVID-12-HEXAPRO (Patria) is safe and highly immunogenic in the pig model. IMPORTANCE Several highly efficacious vaccines for SARS-CoV-2 have been developed and are used in the population. However, the current production capacity cannot meet the global demand. Therefore, additional vaccines-especially ones that can be produced locally and at low cost-are urgently needed. This work describes preclinical testing of a SARS-CoV-2 vaccine candidate which meets these criteria.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Doença de Newcastle/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Formação de Anticorpos/fisiologia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Suínos
2.
Elife ; 52016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27350259

RESUMO

Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade.


Assuntos
Evolução Molecular , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Zoonoses/virologia , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , México , Infecções por Orthomyxoviridae/virologia , Pandemias , Análise de Sequência de DNA , Suínos , Doenças dos Suínos/epidemiologia , Zoonoses/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA