Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 27(6): e14462, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031813

RESUMO

The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.


Assuntos
Produtos Agrícolas , Microbiota , Rizosfera , Microbiologia do Solo , Produtos Agrícolas/microbiologia , Solo/química , Fungos/fisiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Invertebrados/microbiologia , Invertebrados/fisiologia
2.
Oecologia ; 204(3): 603-612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393366

RESUMO

Tree diversity promotes predator abundance and diversity, but evidence linking these effects to increased predation pressure on herbivores remains limited. In addition, tree diversity effects on predators can vary temporally as a function of environmental variation, or due to contrasting responses by different predator types. In a multi-year study, we assessed temporal variation in tree diversity effects on bird community abundance, diversity, and predation rates as a whole and by functional group based on feeding guild (omnivores vs. insectivores) and migratory status (migrant vs. resident). To this end, we conducted bird point counts in tree monocultures and polycultures and assessed attacks on clay caterpillars four times over a 2-year period in a tree diversity experiment in Yucatan, Mexico. Tree diversity effects on the bird community varied across surveys, with positive effects on bird abundance and diversity in most but not all surveys. Tree diversity had stronger and more consistent effects on omnivorous and resident birds than on insectivorous and migratory species. Tree diversity effects on attack rates also varied temporally but patterns did not align with variation in bird abundance or diversity. Thus, while we found support for predicted increases in bird abundance, diversity, and predation pressure with tree diversity, these responses exhibited substantial variation over time and the former two were uncoupled from patterns of predation pressure, as well as contingent on bird functional traits. These results underscore the need for long-term studies measuring responses by different predator functional groups to better understand tree diversity effects on top-down control.


Assuntos
Herbivoria , Árvores , Animais , Árvores/fisiologia , Insetos/fisiologia , Aves/fisiologia , Comportamento Predatório/fisiologia , Ecossistema
3.
Planta ; 258(6): 113, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938392

RESUMO

MAIN CONCLUSION: Our results indicate caterpillars and aphids cause similar levels of induced defences and resistance against caterpillars in wild cotton plants. These symmetrical effects are not consistent with patterns predicted by plant defensive signaling crosstalk and call for further work addressing the biochemical mechanisms underpinning these results. Plant-induced responses to attack often mediate interactions between different species of insect herbivores. These effects are predicted to be contingent on the herbivore's feeding guild, whereby prior feeding by insects should negatively impact subsequent feeding by insects of the same guild (induced resistance) but may positively influence insects of a different guild (induced susceptibility) due to interfering crosstalk between plant biochemical pathways specific to each feeding guild. We compared the effects of prior feeding by leaf-chewing caterpillars (Spodoptera frugiperda) vs. sap-sucking aphids (Aphis gossypii) on induced defences in wild cotton (Gossypium hirsutum) and the consequences of these attacks on subsequently feeding caterpillars (S. frugiperda). To this end, we conducted a greenhouse experiment where cotton plants were either left undamaged or first exposed to caterpillar or aphid feeding, and we subsequently placed caterpillars on the plants to assess their performance. We also collected leaves to assess the induction of chemical defences in response to herbivory. We found that prior feeding by both aphids and caterpillars resulted in reductions in consumed leaf area, caterpillar mass gain, and caterpillar survival compared with control plants. Concomitantly, prior aphid and caterpillar herbivory caused similar increases in phenolic compounds (flavonoids and hydroxycinnamic acids) and defensive terpenoids (hemigossypolone) compared with control plants. Overall, these findings indicate that these insects confer a similar mode and level of induced resistance in wild cotton plants, calling for further work addressing the biochemical mechanisms underpinning these effects.


Assuntos
Afídeos , Gossypium , Animais , Herbivoria , Transdução de Sinais , Ácidos Cumáricos
4.
Oecologia ; 202(2): 313-323, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37278768

RESUMO

Plant-plant interactions via volatile organic compounds (VOCs) have received much attention, but how abiotic stresses affect these interactions is poorly understood. We tested the effect of VOCs exposure from damaged conspecifics on the production of extra-floral nectar (EFN) in wild cotton plants (Gossypium hirsutum), a coastal species in northern Yucatan (Mexico), and whether soil salinization affected these responses. We placed plants in mesh cages, and within each cage assigned plants as emitters or receivers. We exposed emitters to either ambient or augmented soil salinity to simulate a salinity shock, and within each group subjected half of the emitters to no damage or artificial leaf damage with caterpillar regurgitant. Damage increased the emission of sesquiterpenes and aromatic compounds under ambient but not under augmented salinity. Correspondingly, exposure to VOCs from damaged emitters had effect on receiver EFN induction, but this effect was contingent on salinization. Receivers produced more EFN in response to damage after being exposed to VOCs from damaged emitters when the latter were grown under ambient salinity, but not when they were subjected to salinization. These results suggest complex effects of abiotic factors on VOC-mediated plant interactions.


Assuntos
Gossypium , Sesquiterpenos , Néctar de Plantas , Folhas de Planta , Plantas
6.
Am J Bot ; 106(8): 1059-1067, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31322738

RESUMO

PREMISE: The occurrence and amount of herbivory are shaped by bottom-up forces, primarily plant traits (e.g., defenses), and by abiotic factors. Addressing these concurrent effects in a spatial context has been useful in efforts to understand the mechanisms governing variation in plant-herbivore interactions. Still, few studies have evaluated the simultaneous influence of multiple sources of bottom-up variation on spatial variation in herbivory. METHODS: We tested to what extent chemical (phenolics, production of terpenoid glands) and physical (pubescence) defensive plant traits and climatic factors are associated with variation in herbivory by leaf-chewing insects across populations of wild cotton (Gossypium hirsutum). RESULTS: We found substantial population variation in cotton leaf defenses and insect leaf herbivory. Leaf pubescence, but not gossypol gland density or phenolic content, was significantly negatively associated with herbivory by leaf-chewing insects. In addition, there were direct effects of climate on defenses and herbivory, with leaf pubescence increasing toward drier conditions and leaf damage increasing toward wetter and cooler conditions. There was no evidence, however, of indirect effects (via plant defenses) of climate on herbivory. CONCLUSIONS: These results suggest that spatial variation in insect herbivory on wild G. hirsutum is predominantly driven by concurrent and independent influences of population variation in leaf pubescence and climatic factors.


Assuntos
Gossypium , Herbivoria , Animais , Clima , Insetos , Fenótipo , Folhas de Planta
7.
Phytochemistry ; 205: 113454, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36244403

RESUMO

Cultivated plants of Gossypium hirsutum Cav. (cotton) consistently emit low levels of volatile organic compounds, primarily mono- and sesquiterpenoids, which are produced and stored in pigment glands. In this study, we provide a comprehensive evaluation of the terpene profiles of wild G. hirsutum plants sourced from sites located throughout natural distribution of this species, thus providing the first in-depth assessment of the scope of its intraspecific chemotypic diversity. Chemotypic variation can potentially influence resistance to herbivory and diseases, or interact with abiotic stress such as extreme temperatures. Under controlled environmental conditions, plants were grown from seeds of sixteen G. hirsutum populations collected along the coastline of the Yucatan Peninsula, which is its likely centre of origin. We found high levels of intraspecific diversity in the terpene profiles of the plants. Two distinct chemotypes were identified: one chemotype contained higher levels of the monoterpenes γ-terpinene, limonene, α-thujene, α-terpinene, terpinolene, and p-cymene, while the other chemotype was distinguished by higher levels of α- and ß-pinene. The distribution of chemotypes followed a geographic gradient from west to east, with an increasing frequency of the former chemotype. Concurrent analysis of maternal plants revealed that chemotypes in wild G. hirsutum are highly heritable.


Assuntos
Gossypium , Terpenos , Gossypium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA