Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Development ; 146(24)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31784459

RESUMO

Mechanical forces can elicit a mechanotransduction response through junction-associated proteins. In contrast to the wealth of knowledge available for focal adhesions and adherens junctions, much less is known about mechanotransduction at hemidesmosomes. Here, we focus on the C. elegans plectin homolog VAB-10A, the only evolutionary conserved hemidesmosome component. In C. elegans, muscle contractions induce a mechanotransduction pathway in the epidermis through hemidesmosomes. We used CRISPR to precisely remove spectrin repeats (SRs) or a partially hidden Src homology 3 (SH3) domain within the VAB-10 plakin domain. Deleting the SH3 or SR8 domains in combination with mutations affecting mechanotransduction, or just the part of SR5 shielding the SH3 domain, induced embryonic elongation arrest because hemidesmosomes collapse. Notably, recruitment of GIT-1, the first mechanotransduction player, requires the SR5 domain and the hemidesmosome transmembrane receptor LET-805. Furthermore, molecular dynamics simulations confirmed that forces acting on VAB-10 could make the central SH3 domain, otherwise in contact with SR4, available for interaction. Collectively, our data strongly indicate that the plakin domain plays a central role in mechanotransduction and raise the possibility that VAB-10/plectin might act as a mechanosensor.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Mecanotransdução Celular/genética , Morfogênese/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Embrião não Mamífero , Epiderme/embriologia , Epiderme/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Imagem com Lapso de Tempo
2.
Development ; 143(1): 160-73, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26586219

RESUMO

C. elegans embryonic elongation is a morphogenetic event driven by actomyosin contractility and muscle-induced tension transmitted through hemidesmosomes. A role for the microtubule cytoskeleton has also been proposed, but its contribution remains poorly characterized. Here, we investigate the organization of the non-centrosomal microtubule arrays present in the epidermis and assess their function in elongation. We show that the microtubule regulators γ-tubulin and NOCA-1 are recruited to hemidesmosomes and adherens junctions early in elongation. Several parallel approaches suggest that microtubule nucleation occurs from these sites. Disrupting the epidermal microtubule array by overexpressing the microtubule-severing protein Spastin or by inhibiting the C. elegans ninein homolog NOCA-1 in the epidermis mildly affected elongation. However, microtubules were essential for elongation when hemidesmosomes or the activity of the Rho kinase LET-502/ROCK were partially compromised. Imaging of junctional components and genetic analyses suggest that epidermal microtubules function together with Rho kinase to promote the transport of E-cadherin to adherens junctions and myotactin to hemidesmosomes. Our results indicate that the role of LET-502 in junctional remodeling is likely to be independent of its established function as a myosin II activator, but requires a microtubule-dependent pathway involving the syntaxin SYX-5. Hence, we propose that non-centrosomal microtubules organized by epidermal junctions contribute to elongation by transporting junction remodeling factors, rather than having a mechanical role.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Células Epidérmicas , Microtúbulos/metabolismo , Quinases Associadas a rho/metabolismo , Actomiosina/metabolismo , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas do Citoesqueleto , Citoesqueleto/metabolismo , Epiderme/metabolismo , Hemidesmossomos/metabolismo , Morfogênese/fisiologia , Proteínas Musculares/metabolismo , Miosina Tipo II/metabolismo , Proteínas Nucleares , Transporte Proteico/genética , Proteínas Qa-SNARE/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Tubulina (Proteína)/metabolismo
3.
Biophys J ; 110(7): 1605-1614, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27074685

RESUMO

Budding yeast cells have a finite replicative life span; that is, a mother cell produces only a limited number of daughter cells before it slows division and dies. Despite the gradual aging of the mother cell, all daughters are born rejuvenated and enjoy a full replicative lifespan. It has been proposed that entry of mother cells into senescence is driven by the progressive accumulation and retention of damaged material, including protein aggregates. This additionally allows the daughter cells to be born damage free. However, the mechanism underlying such asymmetrical segregation of protein aggregates by mother and daughter cells remains controversial, in part because of the difficulties inherent in tracking the dynamics and fate of protein aggregates in vivo. To overcome such limitations, we have developed single-cell real-time imaging methodology to track the formation of heat-induced protein aggregates in otherwise unperturbed dividing cells. By combining the imaging data with a simple computational model of protein aggregation, we show that the establishment of asymmetrical partitioning of protein aggregates upon division is driven by the large bud-specific dilution rate associated with polarized growth and the absence of significant mother/bud exchange of protein aggregates during the budded phase of the cell cycle. To our knowledge, this study sheds new light on the mechanism of establishment of a segregation bias, which can be accounted for by simple physical arguments.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Agregados Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Divisão Celular , Cinética , Transporte Proteico , Saccharomyces cerevisiae/citologia , Temperatura
4.
Genesis ; 54(4): 229-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26789944

RESUMO

The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of noncentrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions.


Assuntos
Caenorhabditis elegans/citologia , Epitélio/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transporte Proteico
6.
Development ; 138(18): 4013-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21831923

RESUMO

Cytoskeletal regulation is important in cell migration. The Caenorhabditis elegans gonadal distal tip cells (DTCs) offer a simple model with which to investigate the mechanism of cell migration in organogenesis. Here, we report that one of the spectraplakin isoforms, VAB-10B1, plays an essential role in cell and nuclear migration of DTCs by regulating the actin and microtubule (MT) cytoskeleton. In the vab-10(tk27) mutant, which lacks VAB-10B1, alignment of filamentous (F)-actin and MTs was weakly and severely disorganized, respectively, which resulted in a failure to translocate the DTC nucleus and a premature termination of DTC migration. An MT growing-tip marker, EBP-2-GFP, revealed that polarized outgrowth of MTs towards the nuclei of migrating DTCs was strikingly impaired in tk27 animals. A vab-10 mini-gene encoding only the actin- and MT-binding domains significantly rescued the gonadal defects, suggesting that VAB-10B1 has a role in linking actin and MT filaments. These results suggest that VAB-10B1/spectraplakin regulates the polarized alignment of MTs, possibly by linking F-actin and MTs, which enables normal nuclear translocation and cell migration of DTCs.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Movimento Celular/genética , Núcleo Celular/fisiologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Embrião não Mamífero , Gônadas/metabolismo , Gônadas/fisiologia , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Modelos Biológicos , Plaquinas/genética , Plaquinas/metabolismo , Plaquinas/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia
7.
Development ; 136(18): 3109-19, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19675126

RESUMO

Myosin II plays a central role in epithelial morphogenesis; however, its role has mainly been examined in processes involving a single cell type. Here we analyze the structure, spatial requirement and regulation of myosin II during C. elegans embryonic elongation, a process that involves distinct epidermal cells and muscles. We developed novel GFP probes to visualize the dynamics of actomyosin remodeling, and found that the assembly of myosin II filaments, but not actin microfilaments, depends on the myosin regulatory light chain (MLC-4) and essential light chain (MLC-5, which we identified herein). To determine how myosin II regulates embryonic elongation, we rescued mlc-4 mutants with various constructs and found that MLC-4 is essential in a subset of epidermal cells. We show that phosphorylation of two evolutionary conserved MLC-4 serine and threonine residues is important for myosin II activity and organization. Finally, in an RNAi screen for potential myosin regulatory light chain kinases, we found that the ROCK, PAK and MRCK homologs act redundantly. The combined loss of ROCK and PAK, or ROCK and MRCK, completely prevented embryonic elongation, but a constitutively active form of MLC-4 could only rescue a lack of MRCK. This result, together with systematic genetic epistasis tests with a myosin phosphatase mutation, suggests that ROCK and MRCK regulate MLC-4 and the myosin phosphatase. Moreover, we suggest that ROCK and PAK regulate at least one other target essential for elongation, in addition to MLC-4.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Morfogênese/fisiologia , Miosina Tipo II/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Associadas a rho/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Citoesqueleto/metabolismo , Humanos , Dados de Sequência Molecular , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Miosina Tipo II/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Transgenes , Quinases Ativadas por p21/genética , Quinases Associadas a rho/genética
8.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36338152

RESUMO

Perception of oxidative stress in nematodes involves specific neurons expressing antioxidant enzymes. Here, we carefully characterized GFP knock-in lines for C. elegans peroxiredoxin PRDX-2 and thioredoxin TRX-1, and uncovered that left and right I2, PHA and ASJ neurons reproducibly express an asymmetric level of each enzyme. We observed that high-expressing neurons are in most cases associated with a particular side, indicating a directional rather than stochastic type of asymmetry. We propose that the biological relevance of this left-right asymmetry is to fine-tune H 2 O 2 or light sensing, which remains to be investigated.

9.
PLoS One ; 17(9): e0274226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173997

RESUMO

Environmental oxidative stress threatens cellular integrity and should therefore be avoided by living organisms. Yet, relatively little is known about environmental oxidative stress perception. Here, using microfluidics, we showed that like I2 pharyngeal neurons, the tail phasmid PHA neurons function as oxidative stress sensing neurons in C. elegans, but display different responses to H2O2 and light. We uncovered that different but related receptors, GUR-3 and LITE-1, mediate H2O2 signaling in I2 and PHA neurons. Still, the peroxiredoxin PRDX-2 is essential for both, and might promote H2O2-mediated receptor activation. Our work demonstrates that C. elegans can sense a broad range of oxidative stressors using partially distinct H2O2 signaling pathways in head and tail sensillae, and paves the way for further understanding of how the integration of these inputs translates into the appropriate behavior.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Peróxido de Hidrogênio , Neurônios , Estresse Oxidativo , Peroxirredoxinas
10.
Trends Genet ; 24(5): 221-30, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18375008

RESUMO

Epithelial cells play a central role in many embryonic morphogenetic processes, during which they undergo highly coordinated cell shape changes. Here, we review some common principles that have recently emerged through genetic and cellular analyses performed mainly with invertebrate genetic models, focusing on morphogenetic processes involving epithelial sheets. All available data argue that myosin II is the main motor that induces cell shape changes during morphogenesis. We discuss the control of myosin II activity during epithelial morphogenesis, as well as the recently described involvement of microtubules in this process. Finally, we examine how forces unleashed by myosin II can be measured, how embryos use specific brakes to control molecular motors and the potential input of mechano-sensation in morphogenesis.


Assuntos
Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Epitélio/embriologia , Proteínas Motores Moleculares/fisiologia , Morfogênese/fisiologia , Animais , Células Epiteliais/citologia , Células Epiteliais/fisiologia
11.
Curr Biol ; 13(17): 1506-11, 2003 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12956952

RESUMO

TACC (transforming acidic coiled-coil) proteins were first identified by their ability to transform cell lines [1], and links between human cancer and the overexpression of TACC proteins highlight the importance of understanding the biological function of this family of proteins. Herein, we describe the characterization of a new member of the TACC family of proteins in Caenorhabditis elegans, TAC-1. In other systems, TACC proteins associate with the XMAP215 family of microtubule-stabilizing proteins; however, it is unclear whether TACC proteins have microtubule-based functions distinct from XMAP215. We depleted both the XMAP215 ortholog ZYG-9 and TAC-1 via dsRNA-mediated interference (RNAi). We found that tac-1(RNAi) resulted in microtubule-based defects that were very similar to zyg-9(RNAi). Furthermore, TAC-1 and ZYG-9 are required for long astral microtubules in general and long spindle microtubules during spindle assembly. Loss of either protein did not affect the alpha-tubulin immunofluorescence intensity near centrosomes; this finding suggests that microtubule nucleation was not compromised. Both proteins localize to centrosomes and the kinetochore/microtubule region of chromosomes in metaphase and early anaphase. Furthermore, we found that ZYG-9 and TAC-1 physically interact in vivo, and this interaction is important for the efficient localization of the ZYG-9/TAC-1 complex to centrosomes.


Assuntos
Caenorhabditis elegans/embriologia , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Western Blotting , Caenorhabditis elegans/metabolismo , Ciclo Celular/fisiologia , Imunofluorescência , Testes de Precipitina , Interferência de RNA
12.
Elife ; 4: e08649, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371552

RESUMO

Non-centrosomal microtubule arrays assemble in differentiated tissues to perform mechanical and transport-based functions. In this study, we identify Caenorhabditis elegans NOCA-1 as a protein with homology to vertebrate ninein. NOCA-1 contributes to the assembly of non-centrosomal microtubule arrays in multiple tissues. In the larval epidermis, NOCA-1 functions redundantly with the minus end protection factor Patronin/PTRN-1 to assemble a circumferential microtubule array essential for worm growth and morphogenesis. Controlled degradation of a γ-tubulin complex subunit in this tissue revealed that γ-tubulin acts with NOCA-1 in parallel to Patronin/PTRN-1. In the germline, NOCA-1 and γ-tubulin co-localize at the cell surface, and inhibiting either leads to a microtubule assembly defect. γ-tubulin targets independently of NOCA-1, but NOCA-1 targeting requires γ-tubulin when a non-essential putatively palmitoylated cysteine is mutated. These results show that NOCA-1 acts with γ-tubulin to assemble non-centrosomal arrays in multiple tissues and highlight functional overlap between the ninein and Patronin protein families.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica , Tubulina (Proteína)/metabolismo , Animais
13.
Development ; 134(13): 2469-79, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17537791

RESUMO

Embryonic morphogenesis involves the coordinate behaviour of multiple cells and requires the accurate balance of forces acting within different cells through the application of appropriate brakes and throttles. In C. elegans, embryonic elongation is driven by Rho-binding kinase (ROCK) and actomyosin contraction in the epidermis. We identify an evolutionary conserved, actin microfilament-associated RhoGAP (RGA-2) that behaves as a negative regulator of LET-502/ROCK. The small GTPase RHO-1 is the preferred target of RGA-2 in vitro, and acts between RGA-2 and LET-502 in vivo. Two observations show that RGA-2 acts in dorsal and ventral epidermal cells to moderate actomyosin tension during the first half of elongation. First, time-lapse microscopy shows that loss of RGA-2 induces localised circumferentially oriented pulling on junctional complexes in dorsal and ventral epidermal cells. Second, specific expression of RGA-2 in dorsal/ventral, but not lateral, cells rescues the embryonic lethality of rga-2 mutants. We propose that actomyosin-generated tension must be moderated in two out of the three sets of epidermal cells surrounding the C. elegans embryo to achieve morphogenesis.


Assuntos
Actomiosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Epiderme/embriologia , Epiderme/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Morfogênese , Proteínas Serina-Treonina Quinases/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho
14.
Cell ; 128(1): 115-27, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17218259

RESUMO

Microtubule behavior changes during the cell cycle and during spindle assembly. However, it remains unclear how these changes are regulated and coordinated. We describe a complex that targets the Protein Phosphatase 2A holoenzyme (PP2A) to centrosomes in C. elegans embryos. This complex includes Regulator of Spindle Assembly 1 (RSA-1), a targeting subunit for PP2A, and RSA-2, a protein that binds and recruits RSA-1 to centrosomes. In contrast to the multiple functions of the PP2A catalytic subunit, RSA-1 and RSA-2 are specifically required for microtubule outgrowth from centrosomes and for spindle assembly. The centrosomally localized RSA-PP2A complex mediates these functions in part by regulating two critical mitotic effectors: the microtubule destabilizer KLP-7 and the C. elegans regulator of spindle assembly TPXL-1. By regulating a subset of PP2A functions at the centrosome, the RSA complex could therefore provide a means of coordinating microtubule outgrowth from centrosomes and kinetochore microtubule stability during mitotic spindle assembly.


Assuntos
Caenorhabditis elegans/metabolismo , Centrossomo/metabolismo , Complexos Multiproteicos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fuso Acromático/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Catálise , Dimerização , Embrião não Mamífero/anormalidades , Embrião não Mamífero/citologia , Embrião não Mamífero/ultraestrutura , Cinesinas/metabolismo , Microtúbulos/metabolismo , Ligação Proteica , Proteína Fosfatase 2 , Subunidades Proteicas/metabolismo , Transporte Proteico
15.
Dev Biol ; 265(2): 478-90, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14732406

RESUMO

Epithelial differentiation is a very early event during development of most species. The nematode Caenorhabditis elegans, with its well-defined and invariant lineage, offers the possibility to link cell lineage, cell fate specification and gene regulation during epithelial differentiation. Here, we focus on the regulation of the gene lin-26, which is required for proper differentiation of epithelial cells in the ectoderm and mesoderm (somatic gonad). lin-26 expression starts in early embryos and remains on throughout development, in many cell types originating from different sublineages. Using GFP reporters and mutant rescue assays, we performed a molecular dissection of the lin-26 promoter and could identify almost all elements required to establish its complex spatial and temporal expression. Most of these elements act redundantly, or synergistically once combined, to drive expression in cells related by function. We also show that lin-26 promoter elements mediate activation in the epidermis (hypodermis) by the GATA factor ELT-1, or repression in the foregut (pharynx) by the FoxA protein PHA-4. Taken together, our data indicate that lin-26 regulation is achieved to a large extent through tissue-specific cis-regulatory elements.


Assuntos
Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reguladores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Biomarcadores , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Fatores de Transcrição GATA , Genes Reporter , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Transativadores/metabolismo
16.
EMBO Rep ; 4(12): 1175-81, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14634695

RESUMO

The Caenorhabditis elegans early embryo is widely used to study the regulation of microtubule-related processes. In a screen for mutants affecting the first cell division, we isolated a temperature-sensitive mutation affecting pronuclear migration and spindle positioning, phenotypes typically linked to microtubule or centrosome defects. In the mutant, microtubules are shorter and chromosome segregation is impaired, while centrosome organization appears normal. The mutation corresponds to a strong loss of function in mbk-2, a conserved serine/threonine kinase. The microtubule-related defects are due to the postmeiotic persistence of MEI-1, a homologue of the microtubule-severing protein katanin. In addition, P-granule distribution is abnormal in mbk-2 mutants, consistent with genetic evidence that mbk-2 has other functions and with the requirement of mbk-2 activity at the one-cell stage. We propose that mbk-2 potentiates the degradation of MEI-1 and other proteins, possibly via direct phosphorylation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Tirosina Quinases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Divisão Celular , Grânulos Citoplasmáticos/metabolismo , Genótipo , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA