Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(10): 103001, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784142

RESUMO

Accurate nuclear quadrupole moment values are essential as benchmarks for nuclear structure models and for the interpretation of experimentally determined nuclear quadrupole interactions in terms of electronic and molecular structure. Here, we present a novel route to such data by combining perturbed γ-γ angular correlation measurements on free small linear molecules, realized for the first time within this work, with state-of-the-art ab initio electronic structure calculations of the electric field gradient at the probe site. This approach, also feasible for a series of other cases, is applied to Hg and Cd halides, resulting in Q(^{199}Hg,5/2^{-})=+0.674(17) b and Q(^{111}Cd,5/2^{+})=+0.664(7) b.

2.
Anal Chem ; 85(1): 147-55, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23157438

RESUMO

Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in advance. This process is time-consuming and hence costly, especially if the tissue is heterogeneous. In theory, it may be sufficient to only label a few highly representative pixels of an MS image, but it is not known a priori which pixels to select. This motivates active learning strategies in which the algorithm itself queries the expert by automatically suggesting promising candidate pixels of an MS image for labeling. Given a suitable querying strategy, the number of required training labels can be significantly reduced while maintaining classification accuracy. In this work, we propose active learning for convenient annotation of MSI data. We generalize a recently proposed active learning method to the multiclass case and combine it with the random forest classifier. Its superior performance over random sampling is demonstrated on secondary ion mass spectrometry data, making it an interesting approach for the classification of MS images.


Assuntos
Espectrometria de Massa de Íon Secundário , Algoritmos , Animais , Humanos , Células MCF-7 , Camundongos , Reconhecimento Automatizado de Padrão , Máquina de Vetores de Suporte , Transplante Heterólogo
4.
Chemistry ; 9(11): 2636-48, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12794907

RESUMO

By means of a multistep synthetic procedure a dimanganese complex has been prepared, in which a N,N'-bridging pyrazolate ligand spans two CpMn(CO)(2) subunits in a highly preorganized chelate arrangement. The Xray crystallographic analyses of the Mn(I)Mn(I) complex K(+)1(-) and of its non-chelate precursor complex elucidate details of the molecular structure, in particular an unusual pyrazolate binding mode in the solid state and intertwining of the CO ligands in the crowded bimetallic array 1(-). The Mn(I)Mn(I) compound (1(-)), the mixed-valent Mn(I)Mn(II) (1), and the oxidized Mn(II)Mn(II) form (1(+)) have been characterized by various analytical and spectrosopic methods, such as electrochemistry, variable-temperature EPR spectroscopy, IR spectroelectrochemistry, and UV/Vis/NIR spectroelectrochemistry as well as by DFT and TD-DFT calculations. Strong electronic coupling in the mixed-valent complex is observed, but time- (and temperature-) dependent valence detrapping occurs, thus placing 1 in class II according to the Robin and Day assignment, close to the class II/III transition. From variable-temperature EPR spectroscopy a rough estimate of the activation energy and rate for thermal electron transfer can be deduced, with E(th) ( not equal )=13.6 kJ mol(-1) and k(th)=2.6 x 10(10) s(-1) at 298 K. Unexpectedly, no intervalence CT transition for 1 is detected in solution, but one appears in the optical spectrum of solid 1. The conclusions drawn from experiments are fully supported by DFT calculations that were carried out for all three forms of the dimanganese complex. A broken symmetry treatment for mixed-valent 1 reveals almost perfect localization of both spin and charge on one Mn center. According to TD-DFT the first excited states of 1 give rise to the IT processes in the NIR-energy region, as observed in the solid-state spectrum. The HOMOs are located at the Mn ions and are favorably arranged for pi interactions with the bridging pyrazolate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA