Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
EMBO J ; 38(20): e103421, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31566762

RESUMO

Marked cyclin protein oscillations over the cell cycle ensure tight regulation of all cell cycle transitions. Despite expression patterns closely mirroring those of cyclin A, cyclin F has long been regarded as an odd outlier within the cyclin family. Constituting part of an E3 ubiquitin ligase, its main role was seen as highly restricted to timely degradation of very few key substrates to ensure termination of one error-free round of replication. Now, a recent series of studies suggests that cyclin F has very similar roles as its closest relatives, merely mediated through a very different mechanism.


Assuntos
Proteínas de Ciclo Celular , Ciclinas , Ciclo Celular , Fatores de Transcrição E2F , Proteólise , Mutações Sintéticas Letais , Fatores de Transcrição
2.
Proteins ; 90(1): 96-109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34312913

RESUMO

The denatured state of several proteins has been shown to display transient structures that are relevant for folding, stability, and aggregation. To detect them by nuclear magnetic resonance (NMR) spectroscopy, the denatured state must be stabilized by chemical agents or changes in temperature. This makes the environment different from that experienced in biologically relevant processes. Using high-resolution heteronuclear NMR spectroscopy, we have characterized several denatured states of a monomeric variant of HIV-1 protease, which is natively structured in water, induced by different concentrations of urea, guanidinium chloride, and acetic acid. We have extrapolated the chemical shifts and the relaxation parameters to the denaturant-free denatured state at native conditions, showing that they converge to the same values. Subsequently, we characterized the conformational properties of this biologically relevant denatured state under native conditions by advanced molecular dynamics simulations and validated the results by comparison to experimental data. We show that the denatured state of HIV-1 protease under native conditions displays rich patterns of transient native and non-native structures, which could be of relevance to its guidance through a complex folding process.


Assuntos
Protease de HIV , Simulação de Dinâmica Molecular , Desnaturação Proteica , Protease de HIV/química , Protease de HIV/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Dobramento de Proteína
3.
Mol Cell ; 56(3): 453-461, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25306921

RESUMO

The ubiquitin-proteasome system is the major pathway for protein degradation in eukaryotic cells. Proteins to be degraded are conjugated to ubiquitin chains that act as recognition signals for the 26S proteasome. The proteasome subunits Rpn10 and Rpn13 are known to bind ubiquitin, but genetic and biochemical data suggest the existence of at least one other substrate receptor. Here, we show that the phylogenetically conserved proteasome subunit Dss1 (Sem1) binds ubiquitin chains linked by K63 and K48. Atomic resolution data show that Dss1 is disordered and binds ubiquitin by binding sites characterized by acidic and hydrophobic residues. The complementary binding region in ubiquitin is composed of a hydrophobic patch formed by I13, I44, and L69 flanked by two basic regions. Mutations in the ubiquitin-binding site of Dss1 cause growth defects and accumulation of ubiquitylated proteins.


Assuntos
Proteínas de Transporte/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ubiquitina/metabolismo , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA , Proteínas de Schizosaccharomyces pombe/química , Ubiquitina/química
4.
Biochemistry ; 56(8): 1029-1032, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28168877

RESUMO

The human immunodeficiency virus-1 (HIV-1) protease is a complex protein that in its active form adopts a homodimer dominated by ß-sheet structures. We have discovered a cold-denatured state of the monomeric subunit of HIV-1 protease that is populated above 0 °C and therefore directly accessible to various spectroscopic approaches. Using nuclear magnetic resonance secondary chemical shifts, temperature coefficients, and protein dynamics, we suggest that the cold-denatured state populates a compact wet globule containing transient non-native-like α-helical elements. From the linearity of the temperature coefficients and the hydrodynamic radii, we propose that the overall architecture of the cold-denatured state is maintained over the temperature range studied.


Assuntos
Temperatura Baixa , Protease de HIV/química , Desnaturação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica
5.
Chembiochem ; 16(13): 1905-1918, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26147795

RESUMO

De novo design and chemical synthesis of proteins and of other artificial structures that mimic them is a central strategy for understanding protein folding and for accessing proteins with new functions. We have previously described carbohydrates that act as templates for the assembly of artificial proteins, so-called carboproteins. The hypothesis is that the template preorganizes the secondary structure elements and directs the formation of a tertiary structure, thus achieving structural economy in the combination of peptide, linker, and template. We speculate that the structural information from the template could facilitate protein folding. Here we report the design and synthesis of three-helix-bundle carboproteins on deoxyhexopyranosides. The carboproteins were analyzed by CD, analytical ultracentrifugation (AUC), small-angle X-ray scattering (SAXS), and NMR spectroscopy, and this revealed the formation of the first compact and folded monomeric carboprotein, distinctly different from a molten globule. En route to this carboprotein we observed a clear effect originating from the template on protein folding.

6.
Nat Commun ; 14(1): 432, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702902

RESUMO

The tumor suppressor BRCA2 participates in DNA double-strand break repair by RAD51-dependent homologous recombination and protects stressed DNA replication forks from nucleolytic attack. We demonstrate that the C-terminal Recombinase Binding (CTRB) region of BRCA2, encoded by gene exon 27, harbors a DNA binding activity. CTRB alone stimulates the DNA strand exchange activity of RAD51 and permits the utilization of RPA-coated ssDNA by RAD51 for strand exchange. Moreover, CTRB functionally synergizes with the Oligonucleotide Binding fold containing DNA binding domain and BRC4 repeat of BRCA2 in RPA-RAD51 exchange on ssDNA. Importantly, we show that the DNA binding and RAD51 interaction attributes of the CTRB are crucial for homologous recombination and protection of replication forks against MRE11-mediated attrition. Our findings shed light on the role of the CTRB region in genome repair, reveal remarkable functional plasticity of BRCA2, and help explain why deletion of Brca2 exon 27 impacts upon embryonic lethality.


Assuntos
Replicação do DNA , Rad51 Recombinase , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo do DNA , Proteína BRCA2/metabolismo , DNA , Recombinação Homóloga
7.
Biochemistry ; 49(15): 3246-53, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20218679

RESUMO

Secondary chemical shift analysis has been used to characterize the unfolded state of acid-denatured c-src SH3. Even though native c-src SH3 adopts an all-beta fold, we found evidence of transient helicity in regions corresponding to native loops. In particular, residues 40-46, connecting the n-src loop to the third beta-strand, exhibited an apparent helicity of nearly 45%. Furthermore, the RT loop and the diverging turn appeared to adopt non-native-like helical conformations. Interestingly, none of the residues found in transient helical conformations exhibited significant varphi-values [Riddle, D. S., et al. (1999) Nat. Struct. Biol. 6, 1016-1024]. This indicated that the transient helicity has no influence or only a weak influence on the actual protein folding reaction. The residual structural propensities were compared to those of other SH3 domains, revealing heterogeneity in the unfolded ensemble that clearly contrasts with the conserved character of the topology of native state and transition state ensembles typical for SH3 domains.


Assuntos
Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteína Tirosina Quinase CSK , Dicroísmo Circular , Sequências Hélice-Volta-Hélice , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Fosfatos/farmacologia , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína/genética , Espectrometria de Fluorescência , Termodinâmica , Ureia/farmacologia , Domínios de Homologia de src , Quinases da Família src
8.
J Clin Invest ; 130(8): 4069-4080, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32379725

RESUMO

Haploinsufficiency of factors governing genome stability underlies hereditary breast and ovarian cancer. One significant pathway that is disabled as a result is homologous recombination repair (HRR). With the aim of identifying new candidate genes, we examined early-onset breast cancer patients negative for BRCA1 and BRCA2 pathogenic variants. Here, we focused on CtIP (RBBP8 gene), which mediates HRR through the end resection of DNA double-strand breaks (DSBs). Notably, these patients exhibited a number of rare germline RBBP8 variants. Functional analysis revealed that these variants did not affect DNA DSB end resection efficiency. However, expression of a subset of variants led to deleterious nucleolytic degradation of stalled DNA replication forks in a manner similar to that of cells lacking BRCA1 or BRCA2. In contrast to BRCA1 and BRCA2, CtIP deficiency promoted the helicase-driven destabilization of RAD51 nucleofilaments at damaged DNA replication forks. Taken together, our work identifies CtIP as a critical regulator of DNA replication fork integrity, which, when compromised, may predispose to the development of early-onset breast cancer.


Assuntos
Neoplasias da Mama , Replicação do DNA , DNA de Neoplasias , Endodesoxirribonucleases , Mutação em Linhagem Germinativa , Proteínas de Neoplasias , Adulto , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quebras de DNA de Cadeia Dupla , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Feminino , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
9.
J Biomol NMR ; 45(1-2): 121-31, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19618277

RESUMO

Backbone (15)N relaxation parameters and (15)N-(1)H(N) residual dipolar couplings (RDCs) have been measured for a variant of human alpha-lactalbumin (alpha-LA) in 4, 6, 8 and 10 M urea. In the alpha-LA variant, the eight cysteine residues in the protein have been replaced by alanines (all-Ala alpha-LA). This protein is a partially folded molten globule at pH 2 and has been shown previously to unfold in a stepwise non-cooperative manner on the addition of urea. (15)N R(2) values in some regions of all-Ala alpha-LA show significant exchange broadening which is reduced as the urea concentration is increased. Experimental RDC data are compared with RDCs predicted from a statistical coil model and with bulkiness, average area buried upon folding and hydrophobicity profiles in order to identify regions of non-random structure. Residues in the regions corresponding to the B, D and C-terminal 3(10) helices in native alpha-LA show R(2) values and RDC data consistent with some non-random structural propensities even at high urea concentrations. Indeed, for residues 101-106 the residual structure persists in 10 M urea and the RDC data suggest that this might include the formation of a turn-like structure. The data presented here allow a detailed characterization of the non-cooperative unfolding of all-Ala alpha-LA at higher concentrations of denaturant and complement previous studies which focused on structural features of the molten globule which is populated at lower concentrations of denaturant.


Assuntos
Lactalbumina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Ureia/química , Alanina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactalbumina/metabolismo , Modelos Moleculares , Isótopos de Nitrogênio/química , Desnaturação Proteica , Dobramento de Proteína
10.
J Mol Biol ; 315(3): 447-57, 2002 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11786024

RESUMO

P19(INK4d) is a tumor suppressing protein and belongs to a family of cyclin D-dependent kinase inhibitors of CDK4 and CDK6, which play a key role in human cell cycle control. P19 comprises ten alpha-helices arranged sequentially in five ankyrin repeats forming an elongated structure. This rather simple topology, combined with its physiological function, makes p19 an interesting model protein for folding studies. Urea-induced unfolding transitions monitored by far-UV CD and phenylalanine fluorescence coincide and suggest a two-state mechanism for equilibrium unfolding. Unfolding of p19 followed by 2D (1)H-(15)N HSQC spectra revealed a third species at moderate urea concentrations with a maximum population of about 30 % near 3.2 M urea. It shows poor chemical shift dispersion, but cross-peaks emerge for some residues that are distinct from the native or unfolded state. This equilibrium intermediate either arises only at high protein concentrations (as in the NMR experiment) or has similar optical properties to the unfolded state. Stopped-flow far-UV CD experiments at various urea concentrations revealed that alpha-helical structure is formed in three phases, of which only the fastest phase (10 s(-1)) depends upon the urea concentration. The kinetic of the slowest phase (0.017 s(-1)) can be resolved by 1D real-time NMR and accelerated by cyclophilin. It is limited in rate by prolyl isomerization, and native-like ordered structure cannot form prior to this isomerization. The two fast phases lead to 83 % native protein within the dead time of the NMR experiment. In contrast to p16(INK4a), which exhibits only a marginal stability and high unfolding rates, p19 shows the expected stability for a protein of this size with a clear kinetic barrier between the unfolded and folded state. Therefore, p19 might complement the function of less stable INK4 inhibitors in cell cycle control under unfavorable conditions.


Assuntos
Proteínas de Ciclo Celular , Inibidor p16 de Quinase Dependente de Ciclina/química , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Dobramento de Proteína , Dicroísmo Circular , Inibidor de Quinase Dependente de Ciclina p19 , Fluorescência , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fenilalanina/metabolismo , Desnaturação Proteica/efeitos dos fármacos , Renaturação Proteica , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Termodinâmica , Ureia/farmacologia
11.
Nat Commun ; 6: 5800, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25557911

RESUMO

Cells respond to DNA damage by activating cell cycle checkpoints to delay proliferation and facilitate DNA repair. Here, to uncover new checkpoint regulators, we perform RNA interference screening targeting genes involved in ubiquitylation processes. We show that the F-box protein cyclin F plays an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein cyclin F with suppression of the B-Myb/cyclin A pathway to ensure a DNA damage-induced checkpoint response in G2.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Reparo do DNA/fisiologia , Transativadores/metabolismo , Linhagem Celular Tumoral , Primers do DNA/genética , Citometria de Fluxo , Imunofluorescência , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Luciferases , Mutagênese Sítio-Dirigida , Interferência de RNA , RNA Interferente Pequeno/genética , Ubiquitinação
12.
Compr Physiol ; 2(2): 1491-539, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23798308

RESUMO

Integral membrane proteins are one of the most challenging groups of macromolecules despite their apparent conformational simplicity. They manage and drive transport, circulate information, and participate in cellular movements via interactions with other proteins and through intricate conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches, a large variety of developments of well-established techniques are available providing insight into membrane protein flexibility, dynamics, and interactions. Inspired by the speed of development in the application of new strategies, by invention of methods to measure solvent accessibility and describe low-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Animais , Detergentes , Humanos , Proteínas de Membrana/fisiologia , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
13.
PLoS One ; 7(9): e45819, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029259

RESUMO

GAGE proteins are highly similar, primate-specific molecules with unique primary structure and undefined cellular roles. They are restricted to cells of the germ line in adult healthy individuals, but are broadly expressed in a wide range of cancers. In a yeast two-hybrid screen we identified the metazoan transcriptional regulator, Germ cell-less (GCL), as an interaction partner of GAGE12I. GCL directly binds LEM-domain proteins (LAP2ß, emerin, MAN1) at the nuclear envelope, and we found that GAGE proteins were recruited to the nuclear envelope inner membrane by GCL. Based on yeast two-hybrid analysis and pull-down experiments of GCL polypeptides, GCL residues 209-320 (which includes the BACK domain) were deduced sufficient for association with GAGE proteins. GAGE mRNAs and GCL mRNA were demonstrated in human testis and most types of cancers, and at the protein level GAGE members and GCL were co-expressed in cancer cell lines. Structural studies of GAGE proteins revealed no distinct secondary or tertiary structure, suggesting they are intrinsically disordered. Interestingly GAGE proteins formed stable complexes with dsDNA in vitro at physiological concentrations, and GAGE12I bound several different dsDNA fragments, suggesting sequence-nonspecific binding. Dual association of GAGE family members with GCL at the nuclear envelope inner membrane in cells, and with dsDNA in vitro, implicate GAGE proteins in chromatin regulation in germ cells and cancer cells.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Fatores de Transcrição/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Cromatina/metabolismo , Dicroísmo Circular , DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica , Humanos , Masculino , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Especificidade de Órgãos , Plasmídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Testículo/metabolismo , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
14.
J Mol Biol ; 394(2): 351-62, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19766656

RESUMO

Structural investigations of molten globules provide an important contribution towards understanding protein folding pathways. A close similarity between equilibrium molten globule states and kinetic species observed during refolding has been reported for several proteins. However, the experimental conditions, and in particular the pH, under which the equilibrium and kinetic species are studied often differ significantly. For human alpha-lactalbumin (alpha-LA), the equilibrium molten globule is most often studied at pH 2, the so-called A-state, while kinetic refolding experiments are performed at neutral pH. alpha-LA contains a large number of acidic amino acid residues that may influence the properties of the molten globule differently at low and neutral pH. In this study, we investigate the structural preferences of the alpha-LA molten globule at pH 7 at the level of individual residues using nuclear magnetic resonance spectroscopy and compare these data with previous results obtained at pH 2. We show that differences exist in the conformational ensemble that describes the alpha-LA molten globule at these two pH values. The molten globule at pH 7 is generally less stable than that at the low pH A-state. Most notable are differences in the stability of structure for the C-helix and the calcium-binding loop that precedes it and differences in the contribution of long-range hydrophobic contacts between the N-terminal and C-terminal regions of the alpha-domain to the stability of the molten globule. Our results are discussed in the context of previous studies of the alpha-LA molten globule and can be used to reconcile apparent discrepancies in published data relating to the C-helix. In the light of our results, the low pH A-state may not be the best model for the kinetic molten globule observed during refolding of alpha-LA. The pH-dependent effects reported here for alpha-LA may be of relevance in comparisons of equilibrium and kinetic molten globules of other proteins.


Assuntos
Temperatura Alta , Lactalbumina/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Prolina/química , Dobramento de Proteína , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA