Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Neurosci ; 41(47): 9688-9701, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34654752

RESUMO

Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. High-frequency firing of hypothalamic arcuate Kiss1 (Kiss1ARH) neurons releases kisspeptin into the median eminence, and neurokinin B (NKB) and dynorphin onto neighboring Kiss1ARH neurons to generate a slow EPSP mediated by TRPC5 channels that entrains intermittent, synchronous firing of Kiss1ARH neurons. High-frequency optogenetic stimulation of Kiss1ARH neurons also releases glutamate to excite the anorexigenic proopiomelanocortin (POMC) neurons and inhibit the orexigenic neuropeptide Y/agouti-related peptide (AgRP) neurons via metabotropic glutamate receptors. At the molecular level, the endoplasmic reticulum (ER) calcium-sensing protein stromal interaction molecule 1 (STIM1) is critically involved in the regulation of neuronal Ca2+ signaling and neuronal excitability through its interaction with plasma membrane (PM) calcium (e.g., TRPC) channels. Therefore, we hypothesized that deletion of Stim1 in Kiss1ARH neurons would increase neuronal excitability and their synchronous firing, which ultimately would affect energy homeostasis. Using optogenetics in combination with whole-cell recording and GCaMP6 imaging in slices, we discovered that deletion of Stim1 in Kiss1 neurons significantly increased the amplitude and duration of the slow EPSP and augmented synchronous [Ca2+]i oscillations in Kiss1ARH neurons. Deletion of Stim1 in Kiss1ARH neurons amplified the actions of NKB and protected ovariectomized female mice from developing obesity and glucose intolerance with high-fat dieting (HFD). Therefore, STIM1 appears to play a critical role in regulating synchronous firing of Kiss1ARH neurons, which ultimately affects the coordination between energy homeostasis and reproduction.SIGNIFICANCE STATEMENT Hypothalamic arcuate kisspeptin (Kiss1ARH) neurons are essential for stimulating the pulsatile release of gonadotropin-releasing hormone (GnRH) and maintaining fertility. However, Kiss1ARH neurons appear to be a key player in coordinating energy balance with reproduction. The regulation of calcium channels and hence calcium signaling is critically dependent on the endoplasmic reticulum (ER) calcium-sensing protein stromal interaction molecule 1 (STIM1), which interacts with the plasma membrane (PM) calcium channels. We have conditionally deleted Stim1 in Kiss1ARH neurons and found that it significantly increased the excitability of Kiss1ARH neurons and protected ovariectomized female mice from developing obesity and glucose intolerance with high-fat dieting (HFD).


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Kisspeptinas/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Dieta Hiperlipídica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Proteínas de Fluorescência Verde , Camundongos
2.
Neuroendocrinology ; 110(1-2): 105-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31212279

RESUMO

When it comes to obesity, men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage wanes in postmenopausal women. A key diagnostic of the metabolic syndrome is insulin resistance in both peripheral tissues and brain, especially in the hypothalamus. Since the anorexigenic hormone 17ß-estradiol (E2) regulates food intake in part by inhibiting the excitability of the hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons, we hypothesized that E2 would protect against insulin resistance in NPY/AgRP neurons with diet-induced obesity (DIO). Therefore, we did whole-cell recordings and single cell quantitative polymerase chain reaction in arcuate NPYGFP neurons from both female and male mice to test the efficacy of insulin with DIO. The resting membrane potential and input resistance of NPY/AgRP neurons were significantly increased in DIO versus control-diet fed males. Most notably, the efficacy of insulin to activate KATP channels in NPY/AgRP neurons was significantly attenuated, although the KATP channel opener diazoxide was fully effective in NPY/AgRP neurons from DIO males, indicating that the KATP channels were expressed and functional. In contrast, insulin was fully efficacious to activate KATP channels in DIO females, and the response was reversed by the KATP channel blocker tolbutamide. However, the ability of insulin to activate KATP channels was abrogated with ovariectomy but fully restored with E2 replacement. Insulin resistance in obese males was likely mediated by an increase in suppressor of cytokine signaling-3 (SOCS-3), protein tyrosine phosphatase B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP) activity, since the expression of all 3 mRNAs were upregulated in the obese males but not in females. As proof of principle, pre-incubation of hypothalamic slices from DIO males with the PTP1B/TCPTP inhibitor CX08005 completely rescued the effects of insulin. Therefore, E2 protects NPY/AgRP neurons in females against insulin resistance through, at least in part, attenuating phosphatase activity. The neuroprotective effects of E2 may explain sex differences in the expression of metabolic syndrome that disappears with the loss of E2 in aging.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Estradiol/metabolismo , Resistência à Insulina/fisiologia , Neurônios/fisiologia , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Caracteres Sexuais
3.
Proc Natl Acad Sci U S A ; 114(9): 2413-2418, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196880

RESUMO

Mammalian reproductive function depends upon a neuroendocrine circuit that evokes the pulsatile release of gonadotropin hormones (luteinizing hormone and follicle-stimulating hormone) from the pituitary. This reproductive circuit is sensitive to metabolic perturbations. When challenged with starvation, insufficient energy reserves attenuate gonadotropin release, leading to infertility. The reproductive neuroendocrine circuit is well established, composed of two populations of kisspeptin-expressing neurons (located in the anteroventral periventricular hypothalamus, Kiss1AVPV, and arcuate hypothalamus, Kiss1ARH), which drive the pulsatile activity of gonadotropin-releasing hormone (GnRH) neurons. The reproductive axis is primarily regulated by gonadal steroid and circadian cues, but the starvation-sensitive input that inhibits this circuit during negative energy balance remains controversial. Agouti-related peptide (AgRP)-expressing neurons are activated during starvation and have been implicated in leptin-associated infertility. To test whether these neurons relay information to the reproductive circuit, we used AgRP-neuron ablation and optogenetics to explore connectivity in acute slice preparations. Stimulation of AgRP fibers revealed direct, inhibitory synaptic connections with Kiss1ARH and Kiss1AVPV neurons. In agreement with this finding, Kiss1ARH neurons received less presynaptic inhibition in the absence of AgRP neurons (neonatal toxin-induced ablation). To determine whether enhancing the activity of AgRP neurons is sufficient to attenuate fertility in vivo, we artificially activated them over a sustained period and monitored fertility. Chemogenetic activation with clozapine N-oxide resulted in delayed estrous cycles and decreased fertility. These findings are consistent with the idea that, during metabolic deficiency, AgRP signaling contributes to infertility by inhibiting Kiss1 neurons.


Assuntos
Proteína Relacionada com Agouti/genética , Fertilidade/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Neurônios/metabolismo , Inanição/genética , Proteína Relacionada com Agouti/deficiência , Animais , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Clozapina/análogos & derivados , Clozapina/farmacologia , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/fisiologia , Feminino , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Kisspeptinas/metabolismo , Leptina/genética , Leptina/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Optogenética , Reprodução/efeitos dos fármacos , Reprodução/genética , Transdução de Sinais , Técnicas Estereotáxicas
4.
Front Neuroendocrinol ; 51: 116-124, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859883

RESUMO

All of the canonical transient receptor potential channels (TRPC) with the exception of TRPC 2 are expressed in hypothalamic neurons and are involved in multiple homeostatic functions. Although the metabotropic glutamate receptors have been shown to be coupled to TRPC channel activation in cortical and sub-cortical brain regions, in the hypothalamus multiple amine and peptidergic G protein-coupled receptors (GPCRs) and growth factor/cytokine receptors are linked to activation of TRPC channels that are vital for reproduction, temperature regulation, arousal and energy homeostasis. In addition to the neurotransmitters, circulating hormones like insulin and leptin through their cognate receptors activate TRPC channels in POMC neurons. Many of the post-synaptic effects of the neurotransmitters and hormones are regulated in different physiological states by expression of TRPC channels in the post-synaptic neurons. Therefore, TRPC channels are key targets not only for neurotransmitters but circulating hormones in their vital role to control multiple hypothalamic functions, which is the focus of this review.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Humanos
5.
Horm Behav ; 104: 146-155, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29626486

RESUMO

Contribution to Special Issue on Fast effects of steroids. There is now compelling evidence for membrane-associated estrogen receptors in hypothalamic neurons that are critical for the hypothalamic control of homeostatic functions. It has been known for some time that estradiol (E2) can rapidly alter hypothalamic neuronal activity within seconds, indicating that some cellular effects can occur via membrane initiated events. However, our understanding of how E2 signals via membrane-associated receptors and how these signals impact physiological functions is only just emerging. Thus, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell excitability and even gene transcription in hypothalamic neurons. One population of hypothalamic neurons, the anorexigenic proopiomelanocortin (POMC) neurons, has long been considered to be a target of E2's actions based on gene (Pomc) expression studies. However, we now know that E2 can rapidly alter POMC neuronal activity within seconds and activate several intracellular signaling cascades that ultimately affect gene expression, actions which are critical for maintaining sensitivity to insulin in metabolically stressed states. E2 also affects the orexigenic Neuropeptide Y/Agouti-related Peptide (NPY/AgRP) neurons in similarly rapid but antagonistic manner. Therefore, this review will summarize our current state of knowledge of how E2 signals via rapid membrane-initiated and intracellular signaling cascades in POMC and NPY/AgRP neurons to regulate energy homeostasis.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Estradiol/farmacologia , Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteína Relacionada com Agouti , Animais , Anorexia/metabolismo , Regulação do Apetite/fisiologia , Homeostase/efeitos dos fármacos , Humanos , Hipotálamo/fisiologia , Neurônios/fisiologia , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Neuroendocrinology ; 102(3): 184-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25612870

RESUMO

Kisspeptin is a neuropeptide that signals via a Gαq-coupled receptor, GPR54, in gonadotropin-releasing hormone (GnRH) neurons and is essential for pubertal maturation and fertility. Kisspeptin depolarizes and excites GnRH neurons primarily through the activation of canonical transient receptor potential (TRPC) channels and the inhibition of K+ channels. The gonadal steroid 17ß-estradiol (E2) upregulates not only kisspeptin (Kiss1) mRNA but also increases the excitability of the rostral forebrain Kiss1 neurons. In addition, a primary postsynaptic action of E2 on GnRH neurons is to upregulate the expression of channel transcripts that orchestrate the downstream signaling of kisspeptin in GnRH neurons. These include not only TRPC4 channels but also low-voltage-activated T-type calcium channels and high-voltage-activated L-, N- and R-type calcium channel transcripts. Moreover, E2 has direct membrane-initiated actions to alter the excitability of GnRH neurons by enhancing ATP-sensitive potassium channel activity, which is critical for maintaining GnRH neurons in a hyperpolarized state for the recruitment of T-type calcium channels that are important for burst firing. Therefore, E2 modulates the excitability of GnRH neurons as well as of Kiss1 neurons by altering the expression and/or function of ion channels; moreover, kisspeptin provides critical excitatory input to GnRH neurons to facilitate burst firing activity and peptide release.


Assuntos
Encéfalo/metabolismo , Estradiol/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Potenciais de Ação , Animais , Humanos
7.
Endocrinology ; 165(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39082696

RESUMO

CONTEXT: The regulation of pubertal timing and reproductive axis maturation is influenced by a myriad of physiologic and environmental inputs yet remains incompletely understood. OBJECTIVE: To contrast differences in bile acid isoform profiles across defined stages of reproductive maturity in humans and a rat model of puberty and to characterize the role of bile acid signaling via hypothalamic expression of bile acid receptor populations in the rodent model. METHODS: Secondary analysis and pilot studies of clinical cohorts, rodent models, ex vivo analyses of rodent hypothalamic tissues. Bile acid concentrations is the main outcome measure. RESULTS: Lower circulatory conjugated:deconjugated bile acid concentrations and higher total secondary bile acids were observed in postmenarcheal vs pre-/early pubertal adolescents, with similar shifts observed in infantile (postnatal day [PN]14) vs early juvenile (PN21) rats alongside increased tgr5 receptor mRNA expression within the mediobasal hypothalamus of female rats. 16S rRNA gene sequencing of the rodent gut microbiome across postnatal life revealed changes in the gut microbial composition predicted to have bile salt hydrolase activity, which was observed in parallel with the increased deconjugated and increased concentrations of secondary bile acids. We show that TGR5-stimulated GnRH release from hypothalamic explants is mediated through kisspeptin receptors and that early overexpression of human-TGR5 within the arcuate nucleus accelerates pubertal onset in female rats. CONCLUSION: Bile acid isoform shifts along stages of reproductive maturation are conserved across rodents and humans, with preclinical models providing mechanistic insight for the neuroendocrine-hepatic-gut microbiome axis as a potential moderator of pubertal timing in females.


Assuntos
Ácidos e Sais Biliares , Hipotálamo , Receptores Acoplados a Proteínas G , Maturidade Sexual , Animais , Feminino , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ácidos e Sais Biliares/metabolismo , Maturidade Sexual/fisiologia , Ratos , Humanos , Adolescente , Criança , Ratos Sprague-Dawley , Microbioma Gastrointestinal/fisiologia , Puberdade/fisiologia , Puberdade/metabolismo , Adulto Jovem , Adulto
8.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915596

RESUMO

Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of Gonadotropin-releasing Hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, Neurokinin B (NKB), and Dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17ß-estradiol (E2) reduces peptide expression but increases Vglut2 mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current and that contribute to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of Canonical Transient Receptor Potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When TRPC5 channels in Kiss1ARH neurons were deleted using CRISPR, the slow excitatory postsynaptic potential (sEPSP) was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of the Kiss1ARH neuron, suggesting that E2 modifies ionic conductances in Kiss1ARH neurons, enabling the transition from high frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.

9.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915534

RESUMO

Inactivating mutations in the melanocortin 4 receptor (MC4R) gene cause monogenic obesity. Interestingly, female patients also display various degrees of reproductive disorders, in line with the subfertile phenotype of MC4RKO female mice. However, the cellular mechanisms by which MC4R regulates reproduction are unknown. Kiss1 neurons directly stimulate gonadotropin-releasing hormone (GnRH) release through two distinct populations; the Kiss1ARH neurons, controlling GnRH pulses, and the sexually dimorphic Kiss1AVPV/PeN neurons controlling the preovulatory LH surge. Here, we show that Mc4r expressed in Kiss1 neurons is required for fertility in females. In vivo, deletion of Mc4r from Kiss1 neurons in female mice replicates the reproductive impairments of MC4RKO mice without inducing obesity. Conversely, reinsertion of Mc4r in Kiss1 neurons of MC4R null mice restores estrous cyclicity and LH pulsatility without reducing their obese phenotype. In vitro, we dissect the specific action of MC4R on Kiss1ARH vs Kiss1AVPV/PeN neurons and show that MC4R activation excites Kiss1ARH neurons through direct synaptic actions. In contrast, Kiss1AVPV/PeN neurons are normally inhibited by MC4R activation except under elevated estradiol levels, thus facilitating the activation of Kiss1AVPV/PeN neurons to induce the LH surge driving ovulation in females. Our findings demonstrate that POMCARH neurons acting through MC4R, directly regulate reproductive function in females by stimulating the "pulse generator" activity of Kiss1ARH neurons and restricting the activation of Kiss1AVPV/PeN neurons to the time of the estradiol-dependent LH surge, and thus unveil a novel pathway of the metabolic regulation of fertility by the melanocortin system.

10.
Am J Physiol Endocrinol Metab ; 304(11): E1237-44, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23548613

RESUMO

Kisspeptin signaling via its cognate receptor G protein-coupled receptor 54 (GPR54) in gonadotropin-releasing hormone (GnRH) neurons plays a critical role in regulating pituitary secretion of luteinizing hormone and thus reproductive function. GPR54 is G(q)-coupled to activation of phospholipase C and multiple second messenger signaling pathways. Previous studies have shown that kisspeptin potently depolarizes GnRH neurons through the activation of canonical transient receptor potential channels and inhibition of inwardly rectifying K(+) channels to generate sustained firing. Since the initial studies showing that kisspeptin has prolonged effects, the question has been why is there very little spike frequency adaption during sustained firing? Presently, we have discovered that kisspeptin reduces spike frequency adaptation and prolongs firing via the inhibition of a calcium-activated slow afterhyperpolarization current (I(sAHP)). GnRH neurons expressed two distinct I(sAHP), a kisspeptin-sensitive and an apamin-sensitive I(sAHP). Essentially, kisspeptin inhibited 50% of the I(sAHP) and apamin inhibited the other 50% of the current. Furthermore, the kisspeptin-mediated inhibition of I(sAHP) was abrogated by the protein kinase C (PKC) inhibitor calphostin C, and the PKC activator phorbol 12,13-dibutyrate mimicked and occluded any further effects of kisspeptin on I(sAHP). The protein kinase A (PKA) inhibitors H-89 and the Rp diastereomer of adenosine 3',5'-cyclic monophosphorothioate had no effect on the kisspeptin-mediated inhibition but were able to abrogate the inhibitory effects of forskolin on the I(sAHP), suggesting that PKA is not involved. Therefore, in addition to increasing the firing rate through an overt depolarization, kisspeptin can also facilitate sustained firing through inhibiting an apamin-insensitive I(sAHP) in GnRH neurons via a PKC.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/farmacologia , Neurônios/efeitos dos fármacos , Proteína Quinase C/metabolismo , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Feminino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Transdução de Sinais/efeitos dos fármacos
11.
Am J Physiol Endocrinol Metab ; 305(11): E1384-97, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24105416

RESUMO

Kisspeptin (Kiss1) neurons in the rostral periventricular area of the third ventricle (RP3V) provide excitatory drive to gonadotropin-releasing hormone (GnRH) neurons to control fertility. Using whole cell patch clamp recording and single-cell (sc)RT-PCR techniques targeting Kiss1-CreGFP or tyrosine hydroxylase (TH)-EGFP neurons, we characterized the biophysical properties of these neurons and identified the critical intrinsic properties required for burst firing in 17ß-estradiol (E2)-treated, ovariectomized female mice. One-fourth of the RP3V Kiss1 neurons exhibited spontaneous burst firing. RP3V Kiss1 neurons expressed a hyperpolarization-activated h-current (Ih) and a T-type calcium current (IT), which supported hyperpolarization-induced rebound burst firing. Under voltage clamp conditions, all Kiss1 neurons expressed a kinetically fast Ih that was augmented 3.4-fold by high (LH surge-producing)-E2 treatment. scPCR analysis of Kiss1 neurons revealed abundant expression of the HCN1 channel transcripts. Kiss1 neurons also expressed a Ni(2+)- and TTA-P2-sensitive IT that was augmented sixfold with high-E2 treatment. CaV3.1 mRNA was also highly expressed in these cells. Current clamp analysis revealed that rebound burst firing was induced in RP3V Kiss1 neurons in high-E2-treated animals, and the majority of Kiss1 neurons had a hyperpolarization threshold of -84.7 mV, which corresponded to the V½ for IT de-inactivation. Finally, Kiss1 neurons in the RP3V were hyperpolarized by µ- and κ-opioid and GABAB receptor agonists, suggesting that these pathways also contribute to rebound burst firing. Therefore, Kiss1 neurons in the RP3V express the critical channels and receptors that permit E2-dependent rebound burst firing and provide the biophysical substrate that drives the preovulatory surge of GnRH.


Assuntos
Estradiol/farmacologia , Kisspeptinas/metabolismo , Neurônios/fisiologia , Área Pré-Óptica/metabolismo , Animais , Feminino , Fase Folicular/efeitos dos fármacos , Fase Folicular/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Kisspeptinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Ovariectomia , Área Pré-Óptica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Terceiro Ventrículo/efeitos dos fármacos , Terceiro Ventrículo/metabolismo
12.
Front Neuroendocrinol ; 33(4): 376-87, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22871514

RESUMO

It is well known that many of the actions of estrogens in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there now exists compelling evidence for membrane estrogen receptors in hypothalamic and other brain neurons. But, it is not well understood how estrogens signal via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. Indeed, it has been known for sometime that estrogens can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, estrogens can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by estrogens in the hypothalamus, the nature of receptors involved and how they contribute to homeostatic functions.


Assuntos
Temperatura Corporal/fisiologia , Metabolismo Energético/fisiologia , Estradiol/fisiologia , Homeostase/fisiologia , Hipotálamo/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Estrogênio/fisiologia , Reprodução/fisiologia , Feminino , Humanos , Hipotálamo/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Estrogênio/metabolismo
13.
Exp Physiol ; 98(11): 1535-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23884368

RESUMO

Kisspeptin (Kiss1) neurons are vital for reproduction. Gonatotrophin-releasing hormone (GnRH) neurons express the kisspeptin receptor (GPR54), and kisspeptins potently stimulate the release of GnRH by depolarizing and inducing sustained action potential firing in GnRH neurons. As such, Kiss1 neurons may be the presynaptic pacemaker neurons in the hypothalamic circuitry that controls reproduction. There are at least two different populations of Kiss1 neurons; one in the rostral periventricular area (RP3V) that is stimulated by oestrogens and the other in the arcuate nucleus that is inhibited by oestrogens. How each of these Kiss1 neuronal populations participates in the regulation of the reproductive cycle is currently under intense investigation. Based on electrophysiological studies in the guinea-pig and mouse, Kiss1 neurons in general are capable of generating burst-firing behaviour. Essentially, all Kiss1 neurons, which have been studied thus far in the arcuate nucleus, express the ion channels necessary for burst firing, which include hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels and the T-type calcium (Cav3.1) channels. In voltage-clamp conditions, these channels produce distinct currents that can generate burst-firing behaviour in current-clamp conditions. The future challenge is to identify other key channels and synaptic inputs involved in the regulation of the firing properties of Kiss1 neurons and the physiological regulation of the expression of these channels and receptors by oestrogens and other hormones. The ultimate goal is to understand how Kiss1 neurons control the different phases of GnRH neurosecretion, hence reproduction.


Assuntos
Kisspeptinas/fisiologia , Neurônios/fisiologia , Canais de Cátion TRPC/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios , Feminino , Cobaias , Hipotálamo , Camundongos , Neurônios/efeitos dos fármacos
14.
Adv Exp Med Biol ; 784: 113-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23550004

RESUMO

Kisspeptin binding to its cognate G protein-coupled receptor (GPR54, aka Kiss1R) in gonadotropin-releasing hormone (GnRH) neurons stimulates peptide release and activation of the reproductive axis in mammals. Kisspeptin has pronounced pre- and postsynaptic effects, with the latter dominating the excitability of GnRH neurons. Presynaptically, kisspeptin increases the excitatory drive (both GABA-A and glutamate) to GnRH neurons and postsynaptically, kisspeptin inhibits an A-type and inwardly rectifying K(+) (Kir 6.2 and GIRK) currents and activates nonselective cation (TRPC) currents to cause long-lasting depolarization and increased action potential firing. The signaling cascades and the multiple intracellular targets of kisspeptin actions in native GnRH neurons are continuing to be elucidated. This review summarizes our current state of knowledge about kisspeptin signaling in GnRH neurons.


Assuntos
Potenciais de Ação/fisiologia , Hormônio Liberador de Gonadotropina , Kisspeptinas/metabolismo , Neurônios/metabolismo , Potenciais Sinápticos/fisiologia , Transmissão Sináptica/fisiologia , Animais , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Reprodução/fisiologia , Ácido gama-Aminobutírico/metabolismo
15.
J Neurosci ; 31(33): 11825-35, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21849543

RESUMO

Multiple K(+) conductances are targets for many peripheral and central signals involved in the control of energy homeostasis. Potential K(+) channel targets are the KCNQ subunits that form the channels underlying the M-current, a subthreshold, non-inactivating K(+) current that is a common target for G-protein-coupled receptors. Whole-cell recordings were made from GFP (Renilla)-tagged neuropeptide Y (NPY) neurons from the arcuate nucleus of the hypothalamus using protocols to isolate and characterize the M-current in these orexigenic neurons. We recorded robust K(+) currents in the voltage range of the M-current, which were inhibited by the selective KCNQ channel blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) (40 µm), in both intact males and ovariectomized, 17ß-estradiol (E2)-treated females. Since NPY neurons are orexigenic and are active during fasting, the M-current was measured in fed and fasted male mice. Fasting attenuated the XE991-sensitive current by threefold, which correlated with decreased expression of the KCNQ2 and KCNQ3 subunits as measured with quantitative real-time PCR. Furthermore, E2 treatment augmented the XE991-sensitive M-current by threefold in ovariectomized (vs oil-treated) female mice. E2 treatment increased the expression of the KCNQ5 subunit in females but not KCNQ2 or KCNQ3 subunits. Fasting in females abrogated the effects of E2 on M-current activity, at least in part, by decreasing KCNQ2 and KCNQ3 expression. In summary, these data suggest that the M-current plays a pivotal role in the modulation of NPY neuronal excitability and may be an important cellular target for neurotransmitter and hormonal signals in the control of energy homeostasis in both males and females.


Assuntos
Potenciais de Ação/fisiologia , Estradiol/fisiologia , Jejum/fisiologia , Canais de Potássio KCNQ/fisiologia , Neurônios/fisiologia , Neuropeptídeo Y/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Metabolismo Energético/fisiologia , Estradiol/farmacologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Receptores Acoplados a Proteínas G/fisiologia
16.
J Neurophysiol ; 107(7): 1835-44, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22219029

RESUMO

Neurons in the rodent midline thalamic paraventricular nucleus (PVT) receive inputs from brain stem and hypothalamic sites known to participate in sleep-wake and circadian rhythms. To evaluate possible diurnal changes in their excitability, we used patch-clamp techniques to record and examine the properties of neurons in anterior PVT (aPVT) in coronal rat brain slices prepared at zeitgeber time (ZT) 2-6 vs. ZT 14-18 and recorded at ZT 8.4 ± 0.2 (day) vs. ZT 21.2 ± 0.2 (night), the subjective quiet vs. aroused states, respectively. Compared with neurons recorded during the day, neurons from the night period were significantly more depolarized and exhibited a lower membrane conductance that in part reflected loss of a potassium-mediated conductance. Furthermore, these neurons were also significantly more active, with tonic and burst firing patterns. Neurons from each ZT period were assessed for amplitudes of two conductances known to contribute to bursting behavior, i.e., low-threshold-activated Ca(2+) currents (I(T)) and hyperpolarization-activated cation currents (I(h)). Data revealed that amplitudes of both I(T) and I(h) were significantly larger during the night period. In addition, biopsy samples from the night period revealed a significant increase in mRNA for Ca(v)3.1 and Ca(v)3.3 low-threshold Ca(2+) channel subtypes. Neurons recorded from the night period also displayed a comparative enhancement in spontaneous bursting at membrane potentials of approximately -60 mV and in burst firing consequent to hyperpolarization-induced low-threshold currents and depolarization-induced current pulses. These novel in vitro observations reveal that midline thalamic neurons undergo diurnal changes in their I(T), I(h), and undefined potassium conductances. The underlying mechanisms remain to be characterized.


Assuntos
Potenciais de Ação/fisiologia , Ritmo Circadiano/fisiologia , Núcleos da Linha Média do Tálamo/citologia , Condução Nervosa/fisiologia , Neurônios/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Fármacos Cardiovasculares/farmacologia , Caveolina 3/genética , Caveolina 3/metabolismo , Distribuição de Qui-Quadrado , Estimulação Elétrica/métodos , Feminino , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio/metabolismo , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
17.
FASEB J ; 25(10): 3436-47, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21697548

RESUMO

Cytochrome P450 (CYP) epoxygenases CYP2C8 and CYP2J2 generate epoxyeicosatrienoic acids (EETs) from arachidonic acid. Mice with expression of CYP2J2 in cardiomyocytes (αMHC-CYP2J2 Tr) or treated with synthetic EETs have increased functional recovery after ischemia/reperfusion (I/R); however, no studies have examined the role of cardiomyocyte- vs. endothelial-derived EETs or compared the effects of different CYP epoxygenase isoforms in the ischemic heart. We generated transgenic mice with increased endothelial EET biosynthesis (Tie2-CYP2C8 Tr and Tie2-CYP2J2 Tr) or EET hydrolysis (Tie2-sEH Tr). Compared to wild-type (WT), αMHC-CYP2J2 Tr hearts showed increased recovery of left ventricular developed pressure (LVDP) and decreased infarct size after I/R. In contrast, LVDP recovery and infarct size were unchanged in Tie2-CYP2J2 Tr and Tie2-sEH Tr hearts. Surprisingly, compared to WT, Tie2-CYP2C8 Tr hearts had significantly reduced LVDP recovery (from 21 to 14%) and increased infarct size after I/R (from 51 to 61%). Tie2-CYP2C8 Tr hearts also exhibited increased reactive oxygen species (ROS) generation, dihydroxyoctadecenoic acid (DiHOME) formation, and coronary resistance after I/R. ROS scavengers and CYP2C8 inhibition reversed the detrimental effects of CYP2C8 expression in Tie2-CYP2C8 Tr hearts. Treatment of WT hearts with 250 nM 9,10-DiHOME decreased LVDP recovery compared to vehicle (16 vs. 31%, respectively) and increased coronary resistance after I/R. These data demonstrate that increased ROS generation and enhanced DiHOME synthesis by endothelial CYP2C8 impair functional recovery and mask the beneficial effects of increased EET production following I/R.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Endotélio Vascular/metabolismo , Coração/fisiologia , Traumatismo por Reperfusão/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Ácidos Oleicos/metabolismo , Regiões Promotoras Genéticas , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor TIE-2
18.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953135

RESUMO

Hypothalamic kisspeptin (Kiss1) neurons provide indispensable excitatory transmission to gonadotropin-releasing hormone (GnRH) neurons for the coordinated release of gonadotropins, estrous cyclicity, and ovulation. But maintaining reproductive functions is metabolically demanding so there must be a coordination with multiple homeostatic functions, and it is apparent that Kiss1 neurons play that role. There are 2 distinct populations of hypothalamic Kiss1 neurons, namely arcuate nucleus (Kiss1ARH) neurons and anteroventral periventricular and periventricular nucleus (Kiss1AVPV/PeN) neurons in rodents, both of which excite GnRH neurons via kisspeptin release but are differentially regulated by ovarian steroids. Estradiol (E2) increases the expression of kisspeptin in Kiss1AVPV/PeN neurons but decreases its expression in Kiss1ARH neurons. Also, Kiss1ARH neurons coexpress glutamate and Kiss1AVPV/PeN neurons coexpress gamma aminobutyric acid (GABA), both of which are upregulated by E2 in females. Also, Kiss1ARH neurons express critical metabolic hormone receptors, and these neurons are excited by insulin and leptin during the fed state. Moreover, Kiss1ARH neurons project to and excite the anorexigenic proopiomelanocortin neurons but inhibit the orexigenic neuropeptide Y/Agouti-related peptide neurons, highlighting their role in regulating feeding behavior. Kiss1ARH and Kiss1AVPV/PeN neurons also project to the preautonomic paraventricular nucleus (satiety) neurons and the dorsomedial nucleus (energy expenditure) neurons to differentially regulate their function via glutamate and GABA release, respectively. Therefore, this review will address not only how Kiss1 neurons govern GnRH release, but how they control other homeostatic functions through their peptidergic, glutamatergic and GABAergic synaptic connections, providing further evidence that Kiss1 neurons are the key neurons coordinating energy states with reproduction.


Assuntos
Homeostase/fisiologia , Hipotálamo/fisiologia , Kisspeptinas/fisiologia , Neurônios/fisiologia , Animais , Regulação da Temperatura Corporal , Química Encefálica , Metabolismo Energético/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/análise , Kisspeptinas/genética , Hormônio Luteinizante/metabolismo , RNA Mensageiro/análise , Reprodução/fisiologia
19.
Mol Metab ; 66: 101645, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36442744

RESUMO

OBJECTIVE: Proopiomelanocortin (POMC) neurons are the key anorexigenic hypothalamic neuron for integrating metabolic cues to generate the appropriate output for maintaining energy homeostasis and express the requisite channels as a perfect synaptic integrator in this role. Similar to the metabolic hormones leptin and insulin, glutamate also excites POMC neurons via group I metabotropic glutamate receptors (mGluR1 and 5, mGluR1/5) that activate Transient Receptor Potential Canonical (TRPC 5) Channels to cause depolarization. A key modulator of TRPC 5 channel activity is stromal interaction molecule 1 (STIM1), which is involved in recruitment of TRPC 5 channels from receptor-operated to store-operated calcium entry following depletion of calcium from the endoplasmic reticulum. METHODS: We used a single adeno-associated viral (AAV) vector containing a recombinase-dependent Staphylococcus aureus Cas9 (SaCas) and a single guide RNA (sgRNA) to mutate Stim1 in POMCCre neurons in male mice, verified by qPCR of Stim1 mRNA expression in single POMC neurons. Whole-cell patch clamp experiments were conducted to validate the effects of Stim1 mutagenesis. Body weight and food intake were measured in male mice to assess disruptions in energy balance. RESULTS: Reduced Stim1 expression augmented the efficacy of the mGluR1/5 agonist 3, 5-Dihydroxyphenylglycine (DHPG) to depolarize POMC neurons via a Gαq-coupled signaling pathway, which is an essential part of excitatory glutamatergic input in regulating energy homeostasis. The TRPC 5 channel blockers HC070 and Pico145 antagonized the excitatory effects of DHPG. As proof of principle, mutagenesis of Stim1 in POMC neurons reduced food intake, attenuated weight gain, reduced body fat and fat pad mass in mice fed a high fat diet. CONCLUSIONS: Using CRISPR technology we have uncovered a critical role of STIM1 in modulating glutamatergic activation of TRPC 5 channels in POMC neurons, which ultimately is important for maintaining energy balance.


Assuntos
Neurônios , Obesidade , Molécula 1 de Interação Estromal , Animais , Masculino , Camundongos , Cálcio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mutagênese , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
20.
J Neurosci ; 30(4): 1560-5, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20107083

RESUMO

Leptin can exert its potent appetite-suppressing effects via activation of hypothalamic proopiomelanocortin (POMC) neurons. It depolarizes POMC neurons via activation of a yet unidentified nonselective cation current. Therefore, we sought to identify the conductance activated by leptin using whole-cell recording in EGFP-POMC neurons from transgenic mice. The TRPC channel blockers SKF96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride), flufenamic acid, and 2-APB (2-aminoethyl diphenylborinate) potently inhibited the leptin-induced current. Also, lanthanum (La(3+)) and intracellular Ca(2+) potentiated the effects of leptin. Moreover, the diacylglycerol-permeable analog OAG (2-acetyl-1-oleoyl-sn-glycerol) failed to activate any TRPC current. Using a Cs(+)-gluconate-based internal solution, the leptin-activated current reversed near -20 mV. After replacement of external Na(+) and K(+) with Cs(+), the reversal shifted to near 0 mV, and the I/V curve exhibited a negative slope conductance at voltages more negative than -40 mV. Based on scRT-PCR, TRPC1 and TRPC4-7 mRNA were expressed in POMC neurons, with TRPC5 being the most prevalent. The leptin-induced current was blocked by the Jak2 inhibitor AG490, the PI3 kinase inhibitor wortmannin, and the phospholipase C inhibitors, U73122 and ET-18-OCH3. Notably, we identified PLCgamma1 transcripts in the majority of POMC neurons. Therefore, leptin through a Jak2-PI3 kinase-PLCgamma pathway activates TRPC channels, and TRPC1, 4, and 5 appear to be the key channels mediating the depolarizing effects of leptin in POMC neurons.


Assuntos
Hipotálamo/metabolismo , Ativação do Canal Iônico/fisiologia , Leptina/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Apetite/efeitos dos fármacos , Apetite/fisiologia , Compostos de Boro/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Feminino , Ácido Flufenâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Hipotálamo/citologia , Imidazóis/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Lantânio/farmacologia , Leptina/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Coloração e Rotulagem , Canais de Cátion TRPC/efeitos dos fármacos , Canais de Cátion TRPC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA