Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(9): e2310082121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377205

RESUMO

Embryonic development is often considered shielded from the effects of natural selection, being selected primarily for reliable development. However, embryos sometimes represent virulent parasites, triggering a coevolutionary "arms race" with their host. We have examined embryonic adaptations to a parasitic lifestyle in the bitterling fish. Bitterlings are brood parasites that lay their eggs in the gill chamber of host mussels. Bitterling eggs and embryos have adaptations to resist being flushed out by the mussel. These include a pair of projections from the yolk sac that act as an anchor. Furthermore, bitterling eggs all adopt a head-down position in the mussel gills which further increases their chances of survival. To examine these adaptations in detail, we have studied development in the rosy bitterling (Rhodeus ocellatus) using molecular markers, X-ray tomography, and time-lapse imaging. We describe a suite of developmental adaptations to brood parasitism in this species. We show that the mechanism underlying these adaptions is a modified pattern of blastokinesis-a process unique, among fish, to bitterlings. Tissue movements during blastokinesis cause the embryo to do an extraordinary "front-flip" on the yolk. We suggest that this movement determines the spatial orientation of the other developmental adaptations to parasitism, ensuring that they are optimally positioned to help resist the ejection of the embryo from the mussel. Our study supports the notion that natural selection can drive the evolution of a suite of adaptations, both embryonic and extra-embryonic, via modifications in early development.


Assuntos
Cyprinidae , Parasitos , Animais , Interações Hospedeiro-Parasita
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083433

RESUMO

Development has often been viewed as a constraining force on morphological adaptation, but its precise influence, especially on evolutionary rates, is poorly understood. Placental mammals provide a classic example of adaptive radiation, but the debate around rate and drivers of early placental evolution remains contentious. A hallmark of early dental evolution in many placental lineages was a transition from a triangular upper molar to a more complex upper molar with a rectangular cusp pattern better specialized for crushing. To examine how development influenced this transition, we simulated dental evolution on "landscapes" built from different parameters of a computational model of tooth morphogenesis. Among the parameters examined, we find that increases in the number of enamel knots, the developmental precursors of the tooth cusps, were primarily influenced by increased self-regulation of the molecular activator (activation), whereas the pattern of knots resulted from changes in both activation and biases in tooth bud growth. In simulations, increased activation facilitated accelerated evolutionary increases in knot number, creating a lateral knot arrangement that evolved at least ten times on placental upper molars. Relatively small increases in activation, superimposed on an ancestral tritubercular molar growth pattern, could recreate key changes leading to a rectangular upper molar cusp pattern. Tinkering with tooth bud geometry varied the way cusps initiated along the posterolingual molar margin, suggesting that small spatial variations in ancestral molar growth may have influenced how placental lineages acquired a hypocone cusp. We suggest that development could have enabled relatively fast higher-level divergence of the placental molar dentition.


Assuntos
Evolução Biológica , Mamíferos , Dente Molar , Odontogênese/fisiologia , Animais , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Dente Molar/anatomia & histologia , Dente Molar/fisiologia
3.
J Anat ; 243(6): 960-981, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37424444

RESUMO

Vertebral bodies are composed of two types of metameric elements, centra and arches, each of which is considered as a developmental module. Most parts of the teleost vertebral column have a one-to-one relationship between centra and arches, although, in all teleosts, this one-to-one relationship is lost in the caudal fin endoskeleton. Deviation from the one-to-one relationship occurs in most vertebrates, related to changes in the number of vertebral centra or to a change in the number of arches. In zebrafish, deviations also occur predominantly in the caudal region of the vertebral column. In-depth phenotypic analysis of wild-type zebrafish was performed using whole-mount stained samples, histological analyses and synchrotron radiation X-ray tomographic microscopy 3D reconstructions. Three deviant centra phenotypes were observed: (i) fusion of two vertebral centra, (ii) wedge-shaped hemivertebrae and (iii) centra with reduced length. Neural and haemal arches and their spines displayed bilateral and unilateral variations that resemble vertebral column phenotypes of stem-ward actinopterygians or other gnathostomes as well as pathological conditions in extant species. Whether it is possible to distinguish variations from pathological alterations and whether alterations resemble ancestral conditions is discussed in the context of centra and arch variations in other vertebrate groups and basal actinopterygian species.


Assuntos
Coluna Vertebral , Peixe-Zebra , Animais , Coluna Vertebral/diagnóstico por imagem , Fenótipo
4.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751494

RESUMO

Dietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation. This study uses a wide range of complementary techniques (X-rays, histology, TEM, synchrotron X-ray tomographic microscopy, nanoindentation) to describe in detail the effects of dietary P on the zebrafish skeleton, after two months of administering three different diets: 0.5% (low P, LP), 1.0% (regular P, RP), and 1.5% (high P, HP) total P content. LP zebrafish display growth retardation and hypomineralised bones, albeit without deformities. LP zebrafish increase production of non-mineralised bone matrix, and osteoblasts have enlarged endoplasmic reticulum cisternae, indicative for increased collagen synthesis. The HP diet promotes growth, high mineralisation, and stiffness but causes vertebral centra fusions. Structure and arrangement of bone matrix collagen fibres are not influenced by dietary P in all three groups. In conclusion, low dietary P content stimulates the formation of non-mineralised bone without inducing malformations. This indicates that bone formation and mineralisation are uncoupled. In contrast, high dietary P content promotes mineralisation and vertebral body fusions. This new zebrafish model is a useful tool to understand the mechanisms underlying osteomalacia and abnormal mineralisation, due to underlying variations in dietary P levels.


Assuntos
Osso e Ossos/química , Calcificação Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fósforo na Dieta , Animais , Fósforo na Dieta/análise , Fósforo na Dieta/farmacologia , Peixe-Zebra
5.
Proc Biol Sci ; 286(1912): 20191336, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31575362

RESUMO

Anatomical knowledge of early chondrichthyans and estimates of their phylogeny are improving, but many taxa are still known only from microremains. The nearly cosmopolitan and regionally abundant Devonian genus Phoebodus has long been known solely from isolated teeth and fin spines. Here, we report the first skeletal remains of Phoebodus from the Famennian (Late Devonian) of the Maïder region of Morocco, revealing an anguilliform body, specialized braincase, hyoid arch, elongate jaws and rostrum, complementing its characteristic dentition and ctenacanth fin spines preceding both dorsal fins. Several of these features corroborate a likely close relationship with the Carboniferous species Thrinacodus gracia, and phylogenetic analysis places both taxa securely as members of the elasmobranch stem lineage. Identified as such, phoebodont teeth provide a plausible marker for range extension of the elasmobranchs into the Middle Devonian, thus providing a new minimum date for the origin of the chondrichthyan crown-group. Among pre-Carboniferous jawed vertebrates, the anguilliform body shape of Phoebodus is unprecedented, and its specialized anatomy is, in several respects, most easily compared with the modern frilled shark Chlamydoselachus. These results add greatly to the morphological, and by implication ecological, disparity of the earliest elasmobranchs.


Assuntos
Evolução Biológica , Elasmobrânquios/anatomia & histologia , Elasmobrânquios/classificação , Fósseis/anatomia & histologia , Animais , Marrocos
6.
Nature ; 491(7426): 748-51, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23075852

RESUMO

Teeth and jaws constitute a model of the evolutionary developmental biology concept of modularity and they have been considered the key innovations underpinning a classic example of adaptive radiation. However, their evolutionary origins are much debated. Placoderms comprise an extinct sister clade or grade to the clade containing chondrichthyans and osteichthyans, and although they clearly possess jaws, previous studies have suggested that they lack teeth, that they possess convergently evolved tooth-like structures or that they possess true teeth. Here we use synchrotron radiation X-ray tomographic microscopy (SRXTM) of a developmental series of Compagopiscis croucheri (Arthrodira) to show that placoderm jaws are composed of distinct cartilages and gnathal ossifications in both jaws, and a dermal element in the lower jaw. The gnathal ossification is a composite of distinct teeth that developed in succession, polarized along three distinct vectors, comparable to tooth families. The teeth are composed of dentine and bone, and show a distinct pulp cavity that is infilled centripetally as development proceeds. This pattern is repeated in other placoderms, but differs from the structure and development of tooth-like structures in the postbranchial lamina and dermal skeleton of Compagopiscis and other placoderms. We interpret this evidence to indicate that Compagopiscis and other arthrodires possessed teeth, but that tooth and jaw development was not developmentally or structurally integrated in placoderms. Teeth did not evolve convergently among the extant and extinct classes of early jawed vertebrates but, rather, successional teeth evolved within the gnathostome stem-lineage soon after the origin of jaws. The chimaeric developmental origin of this model of modularity reflects the distinct evolutionary origins of teeth and of component elements of the jaws.


Assuntos
Evolução Biológica , Fósseis , Arcada Osseodentária/anatomia & histologia , Dente/anatomia & histologia , Vertebrados/anatomia & histologia , Animais , Austrália , Microscopia , Filogenia , Síncrotrons , Tomografia por Raios X , Vertebrados/classificação
7.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404779

RESUMO

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.


Assuntos
Curadoria de Dados/normas , Conjuntos de Dados como Assunto , Disciplinas das Ciências Biológicas/estatística & dados numéricos , Reprodutibilidade dos Testes , Pesquisa/normas
8.
Evol Dev ; 18(1): 19-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25219878

RESUMO

The role of teeth and jaws, as innovations that underpinned the evolutionary success of living jawed vertebrates, is well understood, but their evolutionary origins are less clear. The origin of teeth, in particular, is mired in controversy with competing hypotheses advocating their origin in external dermal denticles ("outside-in") versus a de novo independent origin ("inside-out"). No evidence has ever been presented demonstrating materially the traditional "outside-in" theory of teeth evolving from dermal denticles, besides circumstantial evidence of a commonality of structure and organogenesis, and phylogenetic evidence that dermal denticles appear earlier in vertebrate phylogeny that do teeth. Meanwhile, evidence has mounted in support of "inside-out" theory, through developmental studies that have indicated that endoderm is required for tooth development, and fossil studies that have shown that tooth-like structures evolved before dermal denticles (conodont dental elements), that tooth replacement evolving before teeth (thelodont pharyngeal denticles), and that teeth evolved many times independently through co-option of such structures. However, the foundations of "inside-out" theory have been undermined fatally by critical reanalysis of the evidence on which it was based. Specifically, it has been shown that teeth develop from dermal, endodermal or mixed epithelia and, therefore, developmental distinctions between teeth and dermal denticles are diminished. Furthermore the odontode-like structure of conodont elements has been shown to have evolved independently of dermal and internal odontodes. The tooth-like replacement encountered in thelodont pharyngeal odontodes has been shown to have evolved independently of teeth and tooth replacement and teeth have been shown to have evolved late within the gnathostome stem lineage indicating that it is probable, if not definitive, that teeth evolved just once in gnathostome evolution. Thus, the "inside-out" hypothesis must be rejected. The phylogenetic distribution of teeth and dermal denticles shows that these odontodes were expressed first in the dermal skeleton, but their topological distribution extended internally in association with oral, nasal and pharyngeal orifices, in a number of distinct evolutionary lineages. This suggests that teeth and oral and pharyngeal denticles emerged phylogenetically through extension of odontogenic competence from the external dermis to internal epithelia. Ultimately, internal and external odontodes appear to be distinct developmental modules in living jawed vertebrates, however, the evidence suggests that this distinction was not established until the evolution of jawed vertebrates, not merely gnathostomes.


Assuntos
Evolução Biológica , Dente , Vertebrados/genética , Animais , Fósseis , Dente/fisiologia , Vertebrados/classificação , Vertebrados/fisiologia
9.
Biol Lett ; 11(6): 20150326, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26109615

RESUMO

Theories on the origin of vertebrate teeth have long focused on chondrichthyans as reflecting a primitive condition-but this is better informed by the extinct placoderms, which constitute a sister clade or grade to the living gnathostomes. Here, we show that 'supragnathal' toothplates from the acanthothoracid placoderm Romundina stellina comprise multi-cuspid teeth, each composed of an enameloid cap and core of dentine. These were added sequentially, approximately circumferentially, about a pioneer tooth. Teeth are bound to a bony plate that grew with the addition of marginal teeth. Homologous toothplates in arthrodire placoderms exhibit a more ordered arrangement of teeth that lack enameloid, but their organization into a gnathal, bound by layers of cellular bone associated with the addition of each successional tooth, is the same. The presence of enameloid in the teeth of Romundina suggests that it has been lost in other placoderms. Its covariation in the teeth and dermal skeleton of placoderms suggests a lack of independence early in the evolution of jawed vertebrates. It also appears that the dentition-manifest as discrete gnathal ossifications-was developmentally discrete from the jaws during this formative episode of vertebrate evolution.


Assuntos
Evolução Biológica , Peixes/anatomia & histologia , Fósseis/anatomia & histologia , Dente/anatomia & histologia , Animais , Tomografia Computadorizada por Raios X
10.
J Paleontol ; 88(4): 727-734, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26306051

RESUMO

Virtual paleontology unites a variety of computational techniques and methods for the visualization and analysis of fossils. Due to their great potential and increasing availability, these methods have become immensely popular in the last decade. However, communicating the wealth of digital information and results produced by the various techniques is still exacerbated by traditional methods of publication. Transferring and processing three-dimensional information, such as interactive models or animations, into scientific publications still poses a challenge. Here, we present different methods and applications to communicate digital data in academia, outreach and education. Three-dimensional PDFs, QR codes, anaglyph stereo imaging, and rapid prototyping-methods routinely used in the engineering, entertainment, or medical industries-are outlined and evaluated for their potential in science publishing and public engagement. Although limitations remain, these are simple, mostly cost-effective, and powerful tools to create novel and innovative resources for education, public engagement, or outreach.

11.
J Paleontol ; 88(4): 676-683, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26306050

RESUMO

Studies of the development of organisms can reveal crucial information on homology of structures. Developmental data are not peculiar to living organisms, and they are routinely preserved in the mineralized tissues that comprise the vertebrate skeleton, allowing us to obtain direct insight into the developmental evolution of this most formative of vertebrate innovations. The pattern of developmental processes is recorded in fossils as successive stages inferred from the gross morphology of multiple specimens and, more reliably and routinely, through the ontogenetic stages of development seen in the skeletal histology of individuals. Traditional techniques are destructive and restricted to a 2-D plane with the third dimension inferred. Effective non-invasive methods of visualizing paleohistology to reconstruct developmental stages of the skeleton are necessary. In a brief survey of paleohistological techniques we discuss the pros and cons of these methods. The use of tomographic methods to reconstruct development of organs is exemplified by the study of the placoderm dentition. Testing evidence for the presence of teeth in placoderms, the first jawed vertebrates, we compare the methods that have been used. These include inferring the development from morphology, and using serial sectioning, microCT or synchrotron X-ray tomographic microscopy (SRXTM) to reconstruct growth stages and directions of growth. The ensuing developmental interpretations are biased by the methods and degree of inference. The most direct and reliable method is using SRXTM data to trace sclerochronology. The resulting developmental data can be used to resolve homology and test hypotheses on the origin of evolutionary novelties.

12.
R Soc Open Sci ; 11(1): 231747, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298398

RESUMO

Jaws are a key vertebrate feature that arose early in our evolution. Placoderms are among the first jawed vertebrates; their fossils yield essential knowledge about the early diversification of gnathostome feeding strategies, diets and modularity. Modularity can be expressed through disproportional lengths of lower and upper jaws as in swordfish or halfbeaks. Alienacanthus malkowskii is an arthrodire from the Famennian of Morocco and Poland, whose most remarkable feature is its lower jaw, which is twice as long as the skull. This is the oldest record of such extreme jaw elongation and modularity in vertebrates. The gnathal plates of Alienacanthus possess sharp, posteriorly recurved teeth that continue anterior of the occlusion in the inferognathals. The dentition suggests a catching and trapping live prey function, and the jaw occlusion is unique among placoderms. This armoured 'fish' expands the morphological and ecological diversity during one of the first radiations of jawed vertebrates with a combination of features so far unrecorded for arthrodires.

13.
iScience ; 27(4): 109405, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510140

RESUMO

Heterozygous mutations in COL10A1 lead to metaphyseal chondrodysplasia type Schmid (MCDS), a skeletal disorder characterized by epiphyseal abnormalities. Prior analysis revealed impaired trimerization and intracellular retention of mutant collagen type X alpha 1 chains as cause for elevated endoplasmic reticulum (ER) stress. However, how ER stress translates into structural defects remained unclear. We generated a medaka (Oryzias latipes) MCDS model harboring a 5 base pair deletion in col10a1, which led to a frameshift and disruption of 11 amino acids in the conserved trimerization domain. col10a1Δ633a heterozygotes recapitulated key features of MCDS and revealed early cell polarity defects as cause for dysregulated matrix secretion and deformed skeletal structures. Carbamazepine, an ER stress-reducing drug, rescued this polarity impairment and alleviated skeletal defects in col10a1Δ633a heterozygotes. Our data imply cell polarity dysregulation as a potential contributor to MCDS and suggest the col10a1Δ633a medaka mutant as an attractive MCDS animal model for drug screening.

14.
Environ Int ; 173: 107865, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36907039

RESUMO

Nanomaterials are widespread in the human environment as pollutants, and are being actively developed for use in human medicine. We have investigated how the size and dose of polystyrene nanoparticles affects malformations in chicken embryos, and have characterized the mechanisms by which they interfere with normal development. We find that nanoplastics can cross the embryonic gut wall. When injected into the vitelline vein, nanoplastics become distributed in the circulation to multiple organs. We find that the exposure of embryos to polystyrene nanoparticles produces malformations that are far more serious and extensive than has been previously reported. These malformations include major congenital heart defects that impair cardiac function. We show that the mechanism of toxicity is the selective binding of polystyrene nanoplastics nanoparticles to neural crest cells, leading to the death and impaired migration of those cells. Consistent with our new model, most of the malformations seen in this study are in organs that depend for their normal development on neural crest cells. These results are a matter of concern given the large and growing burden of nanoplastics in the environment. Our findings suggest that nanoplastics may pose a health risk to the developing embryo.


Assuntos
Cardiopatias Congênitas , Crista Neural , Animais , Gravidez , Feminino , Embrião de Galinha , Humanos , Crista Neural/metabolismo , Microplásticos , Poliestirenos/toxicidade , Desenvolvimento Embrionário
15.
Biol Lett ; 8(5): 833-7, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22628098

RESUMO

Theories on the development and evolution of teeth have long been biased by the fallacy that chondrichthyans reflect the ancestral condition for jawed vertebrates. However, correctly resolving the nature of the primitive vertebrate dentition is challenged by a dearth of evidence on dental development in primitive osteichthyans. Jaw elements from the Silurian-Devonian stem-osteichthyans Lophosteus and Andreolepis have been described to bear a dentition arranged in longitudinal rows and vertical files, reminiscent of a pattern of successional development. We tested this inference, using synchrotron radiation X-ray tomographic microscopy (SRXTM) to reveal the pattern of skeletal development preserved in the sclerochronology of the mineralized tissues. The tooth-like tubercles represent focal elaborations of dentine within otherwise continuous sheets of the dermal skeleton, present in at least three stacked generations. Thus, the tubercles are not discrete modular teeth and their arrangement into rows and files is a feature of the dermal ornamentation that does not reflect a polarity of development or linear succession. These fossil remains have no bearing on the nature of the dentition in osteichthyans and, indeed, our results raise questions concerning the homologies of these bones and the phylogenetic classification of Andreolepis and Lophosteus.


Assuntos
Arcada Osseodentária/anatomia & histologia , Odontogênese , Dente/fisiologia , Vertebrados/fisiologia , Animais , Evolução Biológica , Dentina/fisiologia , Dentição , Fósseis , Arcada Osseodentária/fisiologia , Filogenia , Propriedades de Superfície , Síncrotrons , Dente/crescimento & desenvolvimento , Microtomografia por Raio-X/métodos
16.
J Comp Neurol ; 530(12): 2132-2153, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470436

RESUMO

Bitterlings are carp-like teleost fish (Cypriniformes: Acheilanathidae) known for their specialized brood parasitic lifestyle. Bitterling embryos, in fact, develop inside the gill chamber of their freshwater mussel hosts. However, little is known about how their parasitic lifestyle affects brain development in comparison to nonparasitic species. Here, we document the development of the brain of the rosy bitterling, Rhodeus ocellatus, at four embryonic stages of 165, 185, 210, 235 hours postfertilization (hpf) using micro-computed tomography (microCT). Focusing on developmental regionalization and brain ventricular organization, we relate the development of the brain divisions to those described for zebrafish using the prosomeric model as a reference paradigm. Segmentation and three-dimensional visualization of the ventricular system allowed us to identify changes in the longitudinal brain axis as a result of cephalic flexure during development. The results show that during early embryonic and larval development, histological differentiation, tissue boundaries, periventricular proliferation zones, and ventricular spaces are all detectable by microCT. The results of this study visualized with differential CT profiles are broadly consistent with comparable histological studies, and with the genoarchitecture of teleosts like the zebrafish. Compared to the zebrafish, our study identifies distinct developmental heterochronies in the rosy bitterling, such as a precocious development of the inferior lobe.


Assuntos
Cyprinidae , Cipriniformes , Animais , Neuroanatomia , Microtomografia por Raio-X , Peixe-Zebra
17.
PeerJ ; 10: e14225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36447515

RESUMO

Background: Asymmetric genitalia have repeatedly evolved in animals, yet the underlying causes for their evolution are mostly unknown. The fruit fly Drosophila pachea has asymmetric external genitalia and an asymmetric phallus with a right-sided phallotrema (opening for sperm release). The complex of female and male genitalia is asymmetrically twisted during copulation and males adopt a right-sided copulation posture on top of the female. We wished to investigate if asymmetric male genital morphology and a twisted gentitalia complex may be associated with differential allocation of sperm into female sperm storage organs. Methods: We examined the internal complex of female and male reproductive organs by micro-computed tomography and synchrotron X-ray tomography before, during and after copulation. In addition, we monitored sperm aggregation states and timing of sperm transfer during copulation by premature interruption of copulation at different time-points. Results: The asymmetric phallus is located at the most caudal end of the female abdomen during copulation. The female reproductive tract, in particular the oviduct, re-arranges during copulation. It is narrow in virgin females and forms a broad vesicle at 20 min after the start of copulation. Sperm transfer into female sperm storage organs (spermathecae) was only in a minority of examined copulation trials (13/64). Also, we found that sperm was mainly transferred early, at 2-4 min after the start of copulation. We did not detect a particular pattern of sperm allocation in the left or right spermathecae. Sperm adopted a granular or filamentous aggregation state in the female uterus and spermathecae, respectively. Discussion: No evidence for asymmetric sperm deposition was identified that could be associated with asymmetric genital morphology or twisted complexing of genitalia. Male genital asymmetry may potentially have evolved as a consequence of a complex internal alignment of reproductive organs during copulation in order to optimize low sperm transfer rates.


Assuntos
Genitália Masculina , Sêmen , Animais , Masculino , Feminino , Microtomografia por Raio-X , Genitália Masculina/diagnóstico por imagem , Espermatozoides , Copulação , Drosophila/anatomia & histologia
18.
Sci Adv ; 8(11): eabl3644, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302857

RESUMO

The Siluro-Devonian adaptive radiation of jawed vertebrates, which underpins almost all living vertebrate biodiversity, is characterized by the evolutionary innovation of the lower jaw. Multiple lines of evidence have suggested that the jaw evolved from a rostral gill arch, but when the jaw took on a feeding function remains unclear. We quantified the variety of form in the earliest jaws in the fossil record from which we generated a theoretical morphospace that we then tested for functional optimality. By drawing comparisons with the real jaw data and reconstructed jaw morphologies from phylogenetically inferred ancestors, our results show that the earliest jaw shapes were optimized for fast closure and stress resistance, inferring a predatory feeding function. Jaw shapes became less optimal for these functions during the later radiation of jawed vertebrates. Thus, the evolution of jaw morphology has continually explored previously unoccupied morphospace and accumulated disparity through time, laying the foundation for diverse feeding strategies and the success of jawed vertebrates.

19.
Evol Dev ; 13(6): 523-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23016936

RESUMO

Traditional hypotheses posit that teeth evolved from dermal scales, through the expansion of odontogenetically competent ectoderm into the mouth of jawless vertebrates. The discovery of tooth-like scales inside thelodonts, an extinct group of jawless vertebrates, led to the alternative hypothesis that teeth evolved from endodermal derivatives and that there exists a fundamental developmental and phylogenetic distinction between oral/pharyngeal and external odontodes. We set out a test of this latter hypothesis, examining the development of scales of the thelodont Loganellia scotica using synchrotron radiation X-ray tomographic microscopy (SRXTM). We reveal that the internal scales are organized into fused patches and rows, a key distinction from the discrete dermal scales. The pattern of growth of oral scale patches is polarized, but not along a particular vector, whereas pharyngeal scale rows grew along a vector. Our test of the phylogenetic distribution of oral and pharyngeal scales and teeth in vertebrates indicates that odontodes are first expressed in an external position. Internal scales, where present, are always located near to external orifices; the sequential development of pharyngeal scales in Loganellia is peculiar among thelodonts and other stem gnathostomes. It represents a convergence on, rather than the establishment of, the developmental pattern underpinning tooth replacement in jawed vertebrates. The available evidence suggests that internal odontodes evolved through the expansion of odontogenic competence from external to internal epithelia.


Assuntos
Evolução Biológica , Dente , Vertebrados/anatomia & histologia , Animais , Ectoderma/anatomia & histologia , Extinção Biológica , Fósseis , Filogenia , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA