Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(4)2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29614746

RESUMO

The application of metal oxide gas sensors in Internet of Things (IoT) devices and mobile platforms like wearables and mobile phones offers new opportunities for sensing applications. Metal-oxide (MOx) sensors are promising candidates for such applications, thanks to the scientific progresses achieved in recent years. For the widespread application of MOx sensors, viable commercial offerings are required. In this publication, the authors show that with the new Sensirion Gas Platform (SGP) a milestone in the commercial application of MOx technology has been reached. The architecture of the new platform and its performance in selected applications are presented.

2.
Nano Lett ; 15(8): 4889-95, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26086437

RESUMO

We demonstrate the directional emission of individual GaAs nanowires by coupling this emission to Yagi-Uda optical antennas. In particular, we have replaced the resonant metallic feed element of the nanoantenna by an individual nanowire and measured with the microscope the photoluminescence of the hybrid structure as a function of the emission angle by imaging the back focal plane of the objective. The precise tuning of the dimensions of the metallic elements of the nanoantenna leads to a strong variation of the directionality of the emission, being able to change this emission from backward to forward. We explain the mechanism leading to this directional emission by finite difference time domain simulations of the scattering efficiency of the antenna elements. These results cast the first step toward the realization of electrically driven optical Yagi-Uda antenna emitters based on semiconductors nanowires.

3.
Nano Lett ; 15(2): 1336-42, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25602841

RESUMO

Reliable doping is required to realize many devices based on semiconductor nanowires. Group III-V nanowires show great promise as elements of high-speed optoelectronic devices, but for such applications it is important that the electron mobility is not compromised by the inclusion of dopants. Here we show that GaAs nanowires can be n-type doped with negligible loss of electron mobility. Molecular beam epitaxy was used to fabricate modulation-doped GaAs nanowires with Al0.33Ga0.67As shells that contained a layer of Si dopants. We identify the presence of the doped layer from a high-angle annular dark field scanning electron microscopy cross-section image. The doping density, carrier mobility, and charge carrier lifetimes of these n-type nanowires and nominally undoped reference samples were determined using the noncontact method of optical pump terahertz probe spectroscopy. An n-type extrinsic carrier concentration of 1.10 ± 0.06 × 10(16) cm(-3) was extracted, demonstrating the effectiveness of modulation doping in GaAs nanowires. The room-temperature electron mobility was also found to be high at 2200 ± 300 cm(2) V(-1) s(-1) and importantly minimal degradation was observed compared with undoped reference nanowires at similar electron densities. In addition, modulation doping significantly enhanced the room-temperature photoconductivity and photoluminescence lifetimes to 3.9 ± 0.3 and 2.4 ± 0.1 ns respectively, revealing that modulation doping can passivate interfacial trap states.


Assuntos
Alumínio/química , Arsenicais/química , Gálio/química , Nanofios , Elétrons , Microscopia Eletrônica de Transmissão e Varredura
4.
Nano Lett ; 15(5): 2869-74, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25894762

RESUMO

GaAs nanowire arrays on silicon offer great perspectives in the optoelectronics and solar cell industry. To fulfill this potential, gold-free growth in predetermined positions should be achieved. Ga-assisted growth of GaAs nanowires in the form of array has been shown to be challenging and difficult to reproduce. In this work, we provide some of the key elements for obtaining a high yield of GaAs nanowires on patterned Si in a reproducible way: contact angle and pinning of the Ga droplet inside the apertures achieved by the modification of the surface properties of the nanoscale areas exposed to growth. As an example, an amorphous silicon layer between the crystalline substrate and the oxide mask results in a contact angle around 90°, leading to a high yield of vertical nanowires. Another example for tuning the contact angle is anticipated, native oxide with controlled thickness. This work opens new perspectives for the rational and reproducible growth of GaAs nanowire arrays on silicon.

5.
Nanotechnology ; 26(10): 105603, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25687793

RESUMO

Nanowire diameter has a dramatic effect on the absorption cross-section in the optical domain. The maximum absorption is reached for ideal nanowire morphology within a solar cell device. As a consequence, understanding how to tailor the nanowire diameter and density is extremely important for high-efficient nanowire-based solar cells. In this work, we investigate mastering the diameter and density of self-catalyzed GaAs nanowires on Si(111) substrates by growth conditions using the self-assembly of Ga droplets. We introduce a new paradigm of the characteristic nucleation time controlled by group III flux and temperature that determine diameter and length distributions of GaAs nanowires. This insight into the growth mechanism is then used to grow nanowire forests with a completely tailored diameter-density distribution. We also show how the reflectivity of nanowire arrays can be minimized in this way. In general, this work opens new possibilities for the cost-effective and controlled fabrication of the ensembles of self-catalyzed III-V nanowires for different applications, in particular in next-generation photovoltaic devices.

6.
Nano Lett ; 14(4): 1859-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24564880

RESUMO

Thanks to their unique morphology, nanowires have enabled integration of materials in a way that was not possible before with thin film technology. In turn, this opens new avenues for applications in the areas of energy harvesting, electronics, and optoelectronics. This is particularly true for axial heterostructures, while core-shell systems are limited by the appearance of strain-induced dislocations. Even more challenging is the detection and understanding of these defects. We combine geometrical phase analysis with finite element strain simulations to quantify and determine the origin of the lattice distortion in core-shell nanowire structures. Such combination provides a powerful insight in the origin and characteristics of edge dislocations in such systems and quantifies their impact with the strain field map. We apply the method to heterostructures presenting single and mixed crystalline phase. Mixing crystalline phases along a nanowire turns out to be beneficial for reducing strain in mismatched core-shell structures.


Assuntos
Arsenicais/química , Gálio/química , Nanofios/química , Silício/química , Cristalização , Elasticidade , Análise de Elementos Finitos , Nanofios/ultraestrutura , Semicondutores
7.
Nano Lett ; 14(5): 2271-8, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24742076

RESUMO

We successfully demonstrate the plasmonic coupling between metal nanoantennas and individual GaAs nanowires (NWs). In particular, by using dark-field scattering and second harmonic excitation spectroscopy in partnership with analytical and full-vector FDTD modeling, we demonstrate controlled electromagnetic coupling between individual NWs and plasmonic nanoantennas with gap sizes varied between 90 and 500 nm. The significant electric field enhancement values (up to 20×) achieved inside the NW-nanoantennas gap regions allowed us to tailor the nonlinear optical response of NWs by engineering the plasmonic near-field coupling regime. These findings represent an initial step toward the development of coupled metal-semiconductor resonant nanostructures for the realization of next generation solar cells, detectors, and nonlinear optical devices with reduced footprints and energy consumption.

8.
Sci Rep ; 5: 7651, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25564366

RESUMO

Thanks to their special interaction with light, semiconductor nanowires have opened new avenues in photonics, quantum optics and solar energy harvesting. One of the major challenges for their full technological deployment has been their strong polarization dependence in light absorption and emission. In the past, metal nanostructures have been shown to have the ability to modify and enhance the light response of nanoscale objects. Here we demonstrate that a hybrid structure formed by GaAs nanowires with a highly dense array of bow-tie antennas is able to modify the polarization response of a nanowire. As a result, the increase in light absorption for transverse polarized light changes the nanowire polarization response, including the polarization response inversion. This work will open a new path towards the widespread implementation of nanowires applications such as in photodetection, solar energy harvesting and light emission.

9.
Nanoscale ; 5(20): 9633-9, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23824168

RESUMO

Hybrid structures are formed from materials of different families. Traditionally, group IV and III-V semiconductors have not been integrated together in the same device or application. In this work we present a new approach for obtaining Si-GaAs hybrid heterostructures in nanowires based on a combination of molecular beam epitaxy and plasma enhanced chemical vapor deposition. Crystalline Si segments are integrated into GaAs nanowires grown by the Ga-assisted growth method at temperatures as low as 250 °C. We find that one of the most important factors leading to the successful growth of Si segments on GaAs is the silane-hydrogen dilution, which affects the concentration of silicon and hydrogen-based radicals (SiHx with x < 3) in the plasma, and determines if the Si shell is amorphous, polycrystalline or crystalline, and also if the growth takes place in the axial and/or radial directions. This work opens the path for the successful integration of silicon and III-V materials in one single nanowire.

10.
Nanoscale ; 4(16): 4989-95, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22760816

RESUMO

Defined magnetization states in magnetic nanotubes could be the basic building blocks for future memory elements. To date, it has been extremely challenging to measure the magnetic states at the single-nanotube level. We investigate the magnetization states of an individual Ni nanotube by measuring the anisotropic magnetoresistance effect at cryogenic temperature. Depending on the magnitude and direction of the magnetic field, we program the nanotube to be in a vortex- or onion-like state near remanence.

11.
ACS Nano ; 6(12): 10982-91, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23176345

RESUMO

We report on a new form of III-V compound semiconductor nanostructures growing epitaxially as vertical V-shaped nanomembranes on Si(001) and study their light-scattering properties. Precise position control of the InAs nanostructures in regular arrays is demonstrated by bottom-up synthesis using molecular beam epitaxy in nanoscale apertures on a SiO(2) mask. The InAs V-shaped nanomembranes are found to originate from the two opposite facets of a rectangular pyramidal island nucleus and extend along two opposite <111> B directions, forming flat {110} walls. Dark-field scattering experiments, in combination with light-scattering theory, show the presence of distinctive shape-dependent optical resonances significantly enhancing the local intensity of incident electromagnetic fields over tunable spectral regions. These new nanostructures could have interesting potential in nanosensors, infrared light emitters, and nonlinear optical elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA