Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 292(29): 12153-12164, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28584055

RESUMO

Twenty-four hours of fasting is known to blunt activation of the human NLRP3 inflammasome. This effect might be mediated by SIRT3 activation, controlling mitochondrial reactive oxygen species. To characterize the molecular underpinnings of this fasting effect, we comparatively analyzed the NLRP3 inflammasome response to nutrient deprivation in wild-type and SIRT3 knock-out mice. Consistent with previous findings for human NLRP3, prolonged fasting blunted the inflammasome in wild-type mice but not in SIRT3 knock-out mice. In SIRT3 knock-out bone marrow-derived macrophages, NLRP3 activation promoted excess cytosolic extrusion of mitochondrial DNA along with increased reactive oxygen species and reduced superoxide dismutase 2 (SOD2) activity. Interestingly, the negative regulatory effect of SIRT3 on NLRP3 was not due to transcriptional control or priming of canonical inflammasome components but, rather, occurred via SIRT3-mediated deacetylation of mitochondrial SOD2, leading to SOD2 activation. We also found that siRNA knockdown of SIRT3 or SOD2 increased NLRP3 supercomplex formation and activation. Moreover, overexpression of wild-type and constitutively active SOD2 similarly blunted inflammasome assembly and activation, effects that were abrogated by acetylation mimic-modified SOD2. Finally, in vivo administration of lipopolysaccharide increased liver injury and the levels of peritoneal macrophage cytokines, including IL-1ß, in SIRT3 KO mice. These results support the emerging concept that enhancing mitochondrial resilience against damage-associated molecular patterns may play a pivotal role in preventing inflammation and that the anti-inflammatory effect of fasting-mimetic diets may be mediated, in part, through SIRT3-directed blunting of NLRP3 inflammasome assembly and activation.


Assuntos
Jejum , Inflamassomos/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo , Acetilação/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Células Cultivadas , Ativação Enzimática , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Multimerização Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/química
2.
Anim Dis ; 1(1): 15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778881

RESUMO

Infectious pandemics result in hundreds and millions of deaths, notable examples of the Spanish Flu, the Black Death and smallpox. The current pandemic, caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), is unprecedented even in the historical term of pandemics. The unprecedentedness is featured by multiple surges, rapid identification of therapeutic options and accelerated development of vaccines. Remdesivir, originally developed for Ebola viral disease, is the first treatment of COVID-19 (Coronavirus disease 2019) approved by the United States Food and Drug Administration. As demonstrated by in vitro and preclinical studies, this therapeutic agent is highly potent with a broad spectrum activity against viruses from as many as seven families even cross species. However, randomized controlled trials have failed to confirm the efficacy and safety. Remdesivir improves some clinical signs but not critical parameters such as mortality. This antiviral agent is an ester/phosphorylation prodrug and excessive hydrolysis which increases cellular toxicity. Remdesivir is given intravenously, leading to concentration spikes and likely increasing the potential of hydrolysis-based toxicity. This review has proposed a conceptual framework for improving its efficacy and minimizing toxicity not only for the COVID-19 pandemic but also for future ones caused by remdesivir-sensitive viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA