Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 19(1): 38, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546702

RESUMO

BACKGROUND: Increasing antibiotic resistance continues to focus on research into the discovery of novel antimicrobial agents. Due to its antimicrobial and wound healing-promoting activity, metal nanoparticles have attracted attention for dermatological applications. This study is designed to investigate the scope and bactericidal potential of zinc ferrite nanoparticles (ZnFe2O4 NPs), and the mechanism of anti-bacterial action along with cytocompatibility, hemocompatibility, and wound healing properties. RESULTS: ZnFe2O4 NPs were synthesized via a modified co-precipitation method. Structure, size, morphology, and elemental compositions of ZnFe2O4 NPs were analyzed using X-ray diffraction pattern, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. In PrestoBlue and live/dead assays, ZnFe2O4 NPs exhibited dose-dependent cytotoxic effects on human dermal fibroblasts. In addition, the hemocompatibility assay revealed that the NPs do not significantly rupture red blood cells up to a dose of 1000 µg/mL. Bacterial live/dead imaging and zone of inhibition analysis demonstrated that ZnFe2O4 NPs showed dose-dependent bactericidal activities in various strains of Gram-negative and Gram-positive bacteria. Interestingly, NPs showed antimicrobial activity through multiple mechanisms, such as cell membrane damage, protein leakage, and reactive oxygen species generation, and were more effective against gram-positive bacteria. Furthermore, in vitro scratch assay revealed that ZnFe2O4 NPs improved cell migration and proliferation of cells, with noticeable shrinkage of the artificial wound model. CONCLUSIONS: This study indicated that ZnFe2O4 NPs have the potential to be used as a future antimicrobial and wound healing drug.


Assuntos
Antibacterianos/farmacologia , Compostos Férricos/farmacologia , Nanopartículas , Cicatrização/efeitos dos fármacos , Zinco/farmacologia , Animais , Antibacterianos/química , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/tratamento farmacológico , Compostos Férricos/química , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Células NIH 3T3 , Nanopartículas/química , Nanopartículas/ultraestrutura , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Zinco/química
2.
Adv Healthc Mater ; 12(31): e2301551, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37300448

RESUMO

Hemorrhage and bacterial infections are major hurdles in the management of life-threatening surgical wounds. Most bioadhesives for wound closure lack sufficient hemostatic and antibacterial properties. Furthermore, they suffer from weak sealing efficacy, particularly for stretchable organs, such as the lung and bladder. Accordingly, there is an unmet need for mechanically robust hemostatic sealants with simultaneous antibacterial effects. Here, an injectable, photocrosslinkable, and stretchable hydrogel sealant based on gelatin methacryloyl (GelMA), supplemented with antibacterial zinc ferrite (ZF) nanoparticles and hemostatic silicate nanoplatelets (SNs) for rapid blood coagulation is nanoengineered. The hydrogel reduces the in vitro viability of Staphylococcus aureus by more than 90%. The addition of SNs (2% w/v) and ZF nanoparticles (1.5 mg mL-1 ) to GelMA (20% w/v) improves the burst pressure of perforated ex vivo porcine lungs by more than 40%. Such enhancement translated to ≈250% improvement in the tissue sealing capability compared with a commercial hemostatic sealant, Evicel. Furthermore, the hydrogels reduce bleeding by ≈50% in rat bleeding models. The nanoengineered hydrogel may open new translational opportunities for the effective sealing of complex wounds that require mechanical flexibility, infection management, and hemostasis.


Assuntos
Hemostáticos , Hidrogéis , Ratos , Suínos , Animais , Hidrogéis/farmacologia , Hemostáticos/farmacologia , Hemostasia , Antibacterianos/farmacologia , Silicatos/farmacologia
3.
RSC Adv ; 11(3): 1773-1782, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424142

RESUMO

The current study was devised to explore the antibacterial activity and underlying mechanism of spinel ferrite nanoparticles (NPs) along with their biocompatibility and wound healing potentials. In this regard, nickel ferrite and zinc/nickel ferrite NPs were synthesized via a modified co-precipitation method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy Energy-dispersive X-ray spectroscopy (EDX). The biocompatibility of the synthesized NPs with human dermal fibroblast (HDF) and red blood cells (RBCs) was assessed. The biocompatible concentrations of the NPs were used to investigate the antimicrobial activity against various pathogenic Gram-negative and Gram-positive bacteria. The mode of bactericidal action was also explored. In vitro scratch assay was performed to evaluate the wound healing potential of NPs. The SEM-EDX analysis showed that the average particles size of nickel ferrite and zinc/nickel ferrite were 49 and 46 nm, respectively, with appropriate elemental composition and homogenous distribution. The XRD pattern showed all the characteristic diffraction peaks of spinel ferrite NPs, which confirmed the synthesis of the pure phase cubic spinel structure. The biocompatible concentration of nickel ferrite and zinc/nickel ferrite NPs was found to be 250 and 125 µg ml-1, respectively. Both the NPs showed inhibition against all the selected strains in the concentration range of 50 to 1000 µg ml-1. Studies on the underlying antimicrobial mechanism revealed damage to the cell membrane, protein leakage, and intracellular reactive oxygen species production. The in vitro scratch assay confirmed the migration and proliferation of fibroblast with artificial wound shrinkage. This study shows that nickel ferrite and zinc/nickel ferrite NPs could be a strong candidate for antibacterial and wound healing nano-drugs.

4.
Int J Nanomedicine ; 14: 7809-7822, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31576125

RESUMO

INTRODUCTION: Nanoparticles (NPs) can be toxic due to their nano-range sizes. Zinc oxide (ZnO) has good biocompatibility and is commercially used in cosmetics. Moreover, ZnO NPs have potential biomedical uses, but their safety remains unclear. METHODS: A range of doped ZnO NPs was evaluated for antileishmanial activity and in vitro toxicity in brine shrimp and human macrophages, and N-doped ZnO NPs were evaluated for in vivo toxicity in male BALB/C mice. N-doped ZnO NPs were administered via two routes: intra-peritoneal injection and topically as a paste. The dosages were 10, 50, and 100 mg/kg/day for 14 days. RESULTS: Topical administration was safe at all dosages, but intra-peritoneal injection displayed toxicity at higher doses, namely, 50 and 100 mg/kg/day. The pathological results for the i.p. dose groups were mild to severe degenerative changes in parenchyma cells, increases in Kupffer cells, disappearance of hepatic plates, increases in cell size, ballooning, cytoplasmic changes, and nuclear pyknosis in the liver. Kidney histology was also altered in the i.p. administration group (dose 100 mg/kg/day), with inflammatory changes in the focal area. We associate pathological abnormalities with the presence of doped ZnO NPs at the diseased site, which was verified by PIXE analysis of the liver and kidney samples of the treated and untreated mice groups. CONCLUSION: The toxicity of the doped ZnO NPs can serve as an essential determinant for the effects of ZnO NPs on environmental toxicity and can be used for guidelines for safer use of ZnO-based nanomaterials in topical treatment of leishmaniasis and other biomedical applications.


Assuntos
Anti-Helmínticos/farmacologia , Nanopartículas/toxicidade , Óxido de Zinco/farmacologia , Óxido de Zinco/toxicidade , Animais , Artemia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Rim/efeitos dos fármacos , Rim/patologia , Leishmania/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA