Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 111(8): e16350, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825760

RESUMO

PREMISE: The Caryophyllaceae (the carnation family) have undergone multiple transitions into colder climates and convergence on cushion plant adaptation, indicating that they may provide a natural system for cold adaptation research. Previous research has suggested that putative ancient whole-genome duplications (WGDs) are correlated with niche shifts into colder climates across the Caryophyllales. Here, we explored the genomic changes potentially involved in one of these discovered shifts in the Caryophyllaceae. METHODS: We constructed a data set combining 26 newly generated transcriptomes with 45 published transcriptomes, including 11 cushion plant species across seven genera. With this data set, we inferred a dated phylogeny for the Caryophyllaceae and mapped ancient WGDs and gene duplications onto the phylogeny. We also examined functional groups enriched for gene duplications related to the climatic shift. RESULTS: The ASTRAL topology was mostly congruent with the current consensus of relationships within the family. We inferred 15 putative ancient WGDs in the family, including eight that have not been previously published. The oldest ancient WGD (ca. 64.4-56.7 million years ago), WGD1, was found to be associated with a shift into colder climates by previous research. Gene regions associated with ubiquitination were overrepresented in gene duplications retained after WGD1 and those convergently retained by cushion plants in Colobanthus and Eremogone, along with other functional annotations. CONCLUSIONS: Gene family expansions induced by ancient WGDs may have contributed to the shifts to cold climatic niches in the Caryophyllaceae. Transcriptomic data are crucial resources that help unravel heterogeneity in deep-time evolutionary patterns in plants.


Assuntos
Caryophyllaceae , Temperatura Baixa , Duplicação Gênica , Genoma de Planta , Filogenia , Caryophyllaceae/genética , Adaptação Fisiológica/genética , Transcriptoma , Aclimatação/genética , Evolução Molecular
2.
Bioscience ; 72(10): 978-987, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36196222

RESUMO

The early twenty-first century has witnessed massive expansions in availability and accessibility of digital data in virtually all domains of the biodiversity sciences. Led by an array of asynchronous digitization activities spanning ecological, environmental, climatological, and biological collections data, these initiatives have resulted in a plethora of mostly disconnected and siloed data, leaving to researchers the tedious and time-consuming manual task of finding and connecting them in usable ways, integrating them into coherent data sets, and making them interoperable. The focus to date has been on elevating analog and physical records to digital replicas in local databases prior to elevating them to ever-growing aggregations of essentially disconnected discipline-specific information. In the present article, we propose a new interconnected network of digital objects on the Internet-the Digital Extended Specimen (DES) network-that transcends existing aggregator technology, augments the DES with third-party data through machine algorithms, and provides a platform for more efficient research and robust interdisciplinary discovery.

3.
PhytoKeys ; (63): 77-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27489480

RESUMO

Sixty-three new combinations in Odontostemma (Alsineae, Caryophyllaceae) are made to accommodate placement of all currently recognized taxa of Arenaria subg. Odontostemma within the genus Odontostemma.

4.
PhytoKeys ; (50): 35-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26140019

RESUMO

Twenty-one new combinations in Eremogone (Eremogoneae, Caryophyllaceae) are proposed to accommodate placement of all Old World taxa of Arenariasubg.Eremogone and Eremogoneastrum within Eremogone.

5.
Appl Plant Sci ; 3(9)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26421256

RESUMO

Effective workflows are essential components in the digitization of biodiversity specimen collections. To date, no comprehensive, community-vetted workflows have been published for digitizing flat sheets and packets of plants, algae, and fungi, even though latest estimates suggest that only 33% of herbarium specimens have been digitally transcribed, 54% of herbaria use a specimen database, and 24% are imaging specimens. In 2012, iDigBio, the U.S. National Science Foundation's (NSF) coordinating center and national resource for the digitization of public, nonfederal U.S. collections, launched several working groups to address this deficiency. Here, we report the development of 14 workflow modules with 7-36 tasks each. These workflows represent the combined work of approximately 35 curators, directors, and collections managers representing more than 30 herbaria, including 15 NSF-supported plant-related Thematic Collections Networks and collaboratives. The workflows are provided for download as Portable Document Format (PDF) and Microsoft Word files. Customization of these workflows for specific institutional implementation is encouraged.

6.
Thomson, Scott A; Pyle, Richard L; Ahyong, Shane T; Alonso-Zarazaga, Miguel; Ammirati, Joe; Araya, Juan Francisco; Ascher, John S; Audisio, Tracy Lynn; Azevedo-Santos, Valter M; Bailly, Nicolas; Baker, William J; Balke, Michael; Barclay, Maxwell V. L; Barrett, Russell L; Benine, Ricardo C; Bickerstaff, James R. M; Bouchard, Patrice; Bour, Roger; Bourgoin, Thierry; Boyko, Christopher B; Breure, Abraham S. H; Brothers, Denis J; Byng, James W; Campbell, David; Ceriaco, Luis M. P; Cernak, Istvan; Cerretti, Pierfilippo; Chang, Chih-Han; Cho, Soowon; Copus, Joshua M; Costello, Mark J; Cseh, Andras; Csuzdi, Csaba; Culham, Alastair; D'Elia, Guillermo; d'Acoz, Cedric d'Udekem; Daneliya, Mikhail E; Dekker, Rene; Dickinson, Edward C; Dickinson, Timothy A; van Dijk, Peter Paul; Dijkstra, Klaas-Douwe B; Dima, Balint; Dmitriev, Dmitry A; Duistermaat, Leni; Dumbacher, John P; Eiserhardt, Wolf L; Ekrem, Torbjorn; Evenhuis, Neal L; Faille, Arnaud; Fernandez-Trianam, Jose L; Fiesler, Emile; Fishbein, Mark; Fordham, Barry G; Freitas, Andre V. L; Friol, Natalia R; Fritz, Uwe; Froslev, Tobias; Funk, Vicki A; Gaimari, Stephen D; Garbino, Guilherme S. T; Garraffoni, Andre R. S; Geml, Jozsef; Gill, Anthony C; Gray, Alan; Grazziotin, Felipe Gobbi; Greenslade, Penelope; Gutierrez, Eliecer E; Harvey, Mark S; Hazevoet, Cornelis J; He, Kai; He, Xiaolan; Helfer, Stephan; Helgen, Kristofer M; van Heteren, Anneke H; Garcia, Francisco Hita; Holstein, Norbert; Horvath, Margit K; Hovenkamp, Peter H; Hwang, Wei Song; Hyvonen, Jaakko; Islam, Melissa B; Iverson, John B; Ivie, Michael A; Jaafar, Zeehan; Jackson, Morgan D; Jayat, J. Pablo; Johnson, Norman F; Kaiser, Hinrich; Klitgard, Bente B; Knapp, Daniel G; Kojima, Jun-ichi; Koljalg, Urmas; Kontschan, Jeno; Krell, Frank-Thorsten; Krisai-Greilhuberm, Irmgard; Kullander, Sven; Latelle, Leonardo; Lattke, John E; Lencioni, Valeria; Lewis, Gwilym P; Lhano, Marcos G; Lujan, Nathan K; Luksenburg, Jolanda A; Mariaux, Jean; Marinho-Filho, Jader; Marshall, Christopher J; Mate, Jason F; McDonough, Molly M; Michel, Ellinor; Miranda, Vitor F. O; Mitroiulm, Mircea-Dan; Molinari, Jesus; Monks, Scott; Moore, Abigail J; Moratelli, Ricardo; Muranyi, David; Nakano, Takafumi; Nikolaeva, Svetlana; Noyes, John; Ohl, Michael; Oleas, Nora H; Orrell, Thomas; Pall-Gergele, Barna; Pape, Thomas; Papp, Viktor; Parenti, Lynne R; Patterson, David; Pavlinov, Igor Ya; Pine, Ronald H; Poczai, Peter; Prado, Jefferson; Prathapan, Divakaran; Rabeler, Richard K; Randall, John E; Rheindt, Frank E; Rhodin, Anders G. J; Rodriguez, Sara M; Rogers, D. Christopher; Roque, Fabio de O; Rowe, Kevin C; Ruedas, Luis A; Salazar-Bravo, Jorge; Salvador, Rodrigo B; Sangster, George; Sarmiento, Carlos E; Schigel, Dmitry S; Schmidt, Stefan; Schueler, Frederick W; Segers, Hendrik; Snow, Neil; Souza-Dias, Pedro G. B; Stals, Riaan; Stenroos, Soili; Stone, R. Douglas; Sturm, Charles F; Stys, Pavel; Teta, Pablo; Thomas, Daniel C; Timm, Robert M; Tindall, Brian J; Todd, Jonathan A; Triebel, Dagmar; Valdecasas, Antonio G; Vizzini, Alfredo; Vorontsova, Maria S; de Vos, Jurriaan M; Wagner, Philipp; Watling, Les; Weakley, Alan; Welter-Schultes, Francisco; Whitmore, Daniel; Wilding, Nicholas; Will, Kipling; Williams, Jason; Wilson, Karen; Winston, Judith E; Wuster, Wolfgang; Yanega, Douglas; Yeates, David K; Zaher, Hussam; Zhang, Guanyang; Zhang, Zhi-Qiang; Zhou, Hong-Zhang.
PLoS. Biol. ; 16(3): e2005075, 2018.
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: but-ib15045
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA