Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Med ; 30(1): 19, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302875

RESUMO

BACKGROUND: Clinical manifestation of prostate cancer (PCa) is highly variable. Aggressive tumors require radical treatment while clinically non-significant ones may be suitable for active surveillance. We previously developed the prognostic ProstaTrend RNA signature based on transcriptome-wide microarray and RNA-sequencing (RNA-Seq) analyses, primarily of prostatectomy specimens. An RNA-Seq study of formalin-fixed paraffin-embedded (FFPE) tumor biopsies has now allowed us to use this test as a basis for the development of a novel test that is applicable to FFPE biopsies as a tool for early routine PCa diagnostics. METHODS: All patients of the FFPE biopsy cohort were treated by radical prostatectomy and median follow-up for biochemical recurrence (BCR) was 9 years. Based on the transcriptome data of 176 FFPE biopsies, we filtered ProstaTrend for genes susceptible to FFPE-associated degradation via regression analysis. ProstaTrend was additionally restricted to genes with concordant prognostic effects in the RNA-Seq TCGA prostate adenocarcinoma (PRAD) cohort to ensure robust and broad applicability. The prognostic relevance of the refined Transcriptomic Risk Score (TRS) was analyzed by Kaplan-Meier curves and Cox-regression models in our FFPE-biopsy cohort and 9 other public datasets from PCa patients with BCR as primary endpoint. In addition, we developed a prostate single-cell atlas of 41 PCa patients from 5 publicly available studies to analyze gene expression of ProstaTrend genes in different cell compartments. RESULTS: Validation of the TRS using the original ProstaTrend signature in the cohort of FFPE biopsies revealed a relevant impact of FFPE-associated degradation on gene expression and consequently no significant association with prognosis (Cox-regression, p-value > 0.05) in FFPE tissue. However, the TRS based on the new version of the ProstaTrend-ffpe signature, which included 204 genes (of originally 1396 genes), was significantly associated with BCR in the FFPE biopsy cohort (Cox-regression p-value < 0.001) and retained prognostic relevance when adjusted for Gleason Grade Groups. We confirmed a significant association with BCR in 9 independent cohorts including 1109 patients. Comparison of the prognostic performance of the TRS with 17 other prognostically relevant PCa panels revealed that ProstaTrend-ffpe was among the best-ranked panels. We generated a PCa cell atlas to associate ProstaTrend genes with cell lineages or cell types. Tumor-specific luminal cells have a significantly higher TRS than normal luminal cells in all analyzed datasets. In addition, TRS of epithelial and luminal cells was correlated with increased Gleason score in 3 studies. CONCLUSIONS: We developed a prognostic gene-expression signature for PCa that can be applied to FFPE biopsies and may be suitable to support clinical decision-making.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Inclusão em Parafina , Perfilação da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Risco , Formaldeído , RNA , Biópsia
2.
BMC Cancer ; 23(1): 575, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349736

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the most prevalent cancers worldwide. The clinical manifestations and molecular characteristics of PCa are highly variable. Aggressive types require radical treatment, whereas indolent ones may be suitable for active surveillance or organ-preserving focal therapies. Patient stratification by clinical or pathological risk categories still lacks sufficient precision. Incorporating molecular biomarkers, such as transcriptome-wide expression signatures, improves patient stratification but so far excludes chromosomal rearrangements. In this study, we investigated gene fusions in PCa, characterized potential novel candidates, and explored their role as prognostic markers for PCa progression. METHODS: We analyzed 630 patients in four cohorts with varying traits regarding sequencing protocols, sample conservation, and PCa risk group. The datasets included transcriptome-wide expression and matched clinical follow-up data to detect and characterize gene fusions in PCa. With the fusion calling software Arriba, we computationally predicted gene fusions. Following detection, we annotated the gene fusions using published databases for gene fusions in cancer. To relate the occurrence of gene fusions to Gleason Grading Groups and disease prognosis, we performed survival analyses using the Kaplan-Meier estimator, log-rank test, and Cox regression. RESULTS: Our analyses identified two potential novel gene fusions, MBTTPS2,L0XNC01::SMS and AMACR::AMACR. These fusions were detected in all four studied cohorts, providing compelling evidence for the validity of these fusions and their relevance in PCa. We also found that the number of gene fusions detected in a patient sample was significantly associated with the time to biochemical recurrence in two of the four cohorts (log-rank test, p-value < 0.05 for both cohorts). This was also confirmed after adjusting the prognostic model for Gleason Grading Groups (Cox regression, p-values < 0.05). CONCLUSIONS: Our gene fusion characterization workflow revealed two potential novel fusions specific for PCa. We found evidence that the number of gene fusions was associated with the prognosis of PCa. However, as the quantitative correlations were only moderately strong, further validation and assessment of clinical value is required before potential application.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Prognóstico , Neoplasias da Próstata/patologia , Gradação de Tumores , Transcriptoma , Fusão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
3.
Nat Cancer ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641734

RESUMO

Markers that predict response and resistance to chimeric antigen receptor (CAR) T cells in relapsed/refractory multiple myeloma are currently missing. We subjected mononuclear cells isolated from peripheral blood and bone marrow before and after the application of approved B cell maturation antigen-directed CAR T cells to single-cell multiomic analyses to identify markers associated with resistance and early relapse. Differences between responders and nonresponders were identified at the time of leukapheresis. Nonresponders showed an immunosuppressive microenvironment characterized by increased numbers of monocytes expressing the immune checkpoint molecule CD39 and suppressed CD8+ T cell and natural killer cell function. Analysis of CAR T cells showed cytotoxic and exhausted phenotypes in hyperexpanded clones compared to low/intermediate expanded clones. We identified potential immunotherapy targets on CAR T cells, like PD1, to improve their functionality and durability. Our work provides evidence that an immunosuppressive microenvironment causes resistance to CAR T cell therapies in multiple myeloma.

4.
Genome Biol ; 24(1): 287, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098113

RESUMO

BACKGROUND: The coordinated transcriptional regulation of activated T-cells is based on a complex dynamic behavior of signaling networks. Given an external stimulus, T-cell gene expression is characterized by impulse and sustained patterns over the course. Here, we analyze the temporal pattern of activation across different T-cell populations to develop consensus gene signatures for T-cell activation. RESULTS: Here, we identify and verify general biomarker signatures robustly evaluating T-cell activation in a time-resolved manner. We identify time-resolved gene expression profiles comprising 521 genes of up to 10 disjunct time points during activation and different polarization conditions. The gene signatures include central transcriptional regulators of T-cell activation, representing successive waves as well as sustained patterns of induction. They cover sustained repressed, intermediate, and late response expression rates across multiple T-cell populations, thus defining consensus biomarker signatures for T-cell activation. In addition, intermediate and late response activation signatures in CAR T-cell infusion products are correlated to immune effector cell-associated neurotoxicity syndrome. CONCLUSION: This study is the first to describe temporally resolved gene expression patterns across T-cell populations. These biomarker signatures are a valuable source, e.g., monitoring transcriptional changes during T-cell activation with a reasonable number of genes, annotating T-cell states in single-cell transcriptome studies, or assessing dysregulated functions of human T-cell immunity.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Consenso , Regulação da Expressão Gênica , Biomarcadores
5.
Front Immunol ; 13: 994885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248848

RESUMO

Anti-CD19 CAR-T cell immunotherapy is a hopeful treatment option for patients with B cell lymphomas, however it copes with partly severe adverse effects like neurotoxicity. Single-cell resolved molecular data sets in combination with clinical parametrization allow for comprehensive characterization of cellular subpopulations, their transcriptomic states, and their relation to the adverse effects. We here present a re-analysis of single-cell RNA sequencing data of 24 patients comprising more than 130,000 cells with focus on cellular states and their association to immune cell related neurotoxicity. For this, we developed a single-cell data portraying workflow to disentangle the transcriptional state space with single-cell resolution and its analysis in terms of modularly-composed cellular programs. We demonstrated capabilities of single-cell data portraying to disentangle transcriptional states using intuitive visualization, functional mining, molecular cell stratification, and variability analyses. Our analysis revealed that the T cell composition of the patient's infusion product as well as the spectrum of their transcriptional states of cells derived from patients with low ICANS grade do not markedly differ from those of cells from high ICANS patients, while the relative abundancies, particularly that of cycling cells, of LAG3-mediated exhaustion and of CAR positive cells, vary. Our study provides molecular details of the transcriptomic landscape with possible impact to overcome neurotoxicity.


Assuntos
Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Antígenos CD19 , Humanos , Imunoterapia Adotiva/efeitos adversos , Síndromes Neurotóxicas/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T
6.
FEBS Open Bio ; 12(2): 480-493, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923780

RESUMO

One of the major challenges in cancer research is finding models that closely resemble tumors within patients. Human tissue slice cultures are a promising approach to provide a model of the patient's tumor biology ex vivo. Recently, it was shown that these slices can be successfully analyzed by whole transcriptome sequencing as well as automated histochemistry, increasing their usability as preclinical model. Glioblastoma multiforme (GBM) is a highly malignant brain tumor with poor prognosis and little is known about its genetic background and heterogeneity regarding therapy success. In this study, tissue from the tumors of 25 patients with primary GBM was processed into slice cultures and treated with standard therapy (irradiation and temozolomide). Total RNA sequencing and automated histochemistry were performed to enable analysis of treatment effects at a transcriptional and histological level. Slice cultures from long-term survivors (overall survival [OS] > 24 months) exhibited more apoptosis than cultures from patients with shorter OS. Proliferation within these slices was slightly increased in contrast to other groups, but not significantly. Among all samples, 58 protein-coding genes were upregulated and 32 downregulated in treated vs. untreated slice cultures. In general, an upregulation of DNA damage-related and cell cycle checkpoint genes as well as enrichment of genotoxicity pathways and p53-dependent signaling was found after treatment. Overall, the current study reproduces knowledge from former studies regarding the feasibility of transcriptomic analyses and automated histology in tissue slice cultures. We further demonstrate that the experimental data merge with the clinical follow-up of the patients, which improves the applicability of our model system.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Glioblastoma/metabolismo , Humanos , Análise de Sequência de RNA , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Sequenciamento do Exoma
7.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577501

RESUMO

Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T
8.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577500

RESUMO

Despite promising clinical results in a small subset of malignancies, therapies based on engineered chimeric antigen receptor and T-cell receptor T cells are associated with serious adverse events, including cytokine release syndrome and neurotoxicity. These toxicities are sometimes so severe that they significantly hinder the implementation of this therapeutic strategy. For a long time, existing preclinical models failed to predict severe toxicities seen in human clinical trials after engineered T-cell infusion. However, in recent years, there has been a concerted effort to develop models, including humanized mouse models, which can better recapitulate toxicities observed in patients. The Accelerating Development and Improving Access to CAR and TCR-engineered T cell therapy (T2EVOLVE) consortium is a public-private partnership directed at accelerating the preclinical development and increasing access to engineered T-cell therapy for patients with cancer. A key ambition in T2EVOLVE is to design new models and tools with higher predictive value for clinical safety and efficacy, in order to improve and accelerate the selection of lead T-cell products for clinical translation. Herein, we review existing preclinical models that are used to test the safety of engineered T cells. We will also highlight limitations of these models and propose potential measures to improve them.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Animais , Síndrome da Liberação de Citocina , Humanos , Imunoterapia Adotiva/efeitos adversos , Camundongos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T
9.
Cancers (Basel) ; 12(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365858

RESUMO

In search of new biomarkers suitable for the diagnosis and treatment of prostate cancer, genome-wide transcriptome sequencing was carried out with tissue specimens from 40 prostate cancer (PCa) and 8 benign prostate hyperplasia patients. We identified two intergenic long non-coding transcripts, located in close genomic proximity, which are highly expressed in PCa. Microarray studies on a larger cohort comprising 155 patients showed a profound diagnostic potential of these transcripts (AUC~0.94), which we designated as tumor associated prostate cancer increased lncRNA (TAPIR-1 and -2). To test their therapeutic potential, knockdown experiments with siRNA were carried out. The knockdown caused an increase in the p53/TP53 tumor suppressor protein level followed by downregulation of a large number of cell cycle- and DNA-damage repair key regulators. Furthermore, in radiation therapy resistant tumor cells, the knockdown leads to a renewed sensitization of these cells to radiation treatment. Accordingly, in a preclinical PCa xenograft model in mice, the systemic application of nanoparticles loaded with siRNA targeting TAPIR-1 significantly reduced tumor growth. These findings point to a crucial role of TAPIR-1 and -2 in PCa.

10.
Eur Urol ; 78(3): 452-459, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32631745

RESUMO

BACKGROUND: Prostate cancer (PCa) is the most prevalent solid cancer among men in Western Countries. The clinical behavior of localized PCa is highly variable. Some cancers are aggressive leading to death, while others can even be monitored safely. Hence, there is a high clinical need for precise biomarkers for identification of aggressive disease in addition to established clinical parameters. OBJECTIVE: To develop an RNA expression-based score for the prediction of PCa prognosis that facilitates clinical decision making. DESIGN, SETTING, AND PARTICIPANTS: We assessed 233 tissue specimens of PCa patients with long-term follow-up data from fresh-frozen radical prostatectomies (RPs), from formalin-fixed and paraffin-embedded RP specimens and biopsies by transcriptome-wide next-generation sequencing and customized expression microarrays. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We applied Cox proportional hazard models to the cohorts from different platforms and specimen types. Evidence from these models was combined by fixed-effect meta-analysis to identify genes predictive of the time to death of disease (DoD). Genes were combined by a weighted median approach into a prognostic score called ProstaTrend and transferred for the prediction of biochemical recurrence (BCR) after RP in an independent cohort of The Cancer Genome Atlas (TCGA). RESULTS AND LIMITATIONS: ProstaTrend comprising ∼1400 genes was significantly associated with DoD in the training cohort of PCa patients treated by RP (leave-one-out cross-validation, Cox regression: p=2e-09) and with BCR in the TCGA validation cohort (Cox regression: p=3e-06). The prognostic impact persisted after multivariable Cox regression analysis adjusting for Gleason grading group (GG) ≥3 and resection status (p=0.001; DoD, training cohort) and for GG≥3, pathological stage ≥T3, and resection state (p=0.037; BCR, validation cohort). CONCLUSIONS: ProstaTrend is a transcriptome-based score that predicts DoD and BCR in cohorts of PCa patients treated with RP. PATIENT SUMMARY: ProstaTrend provides molecular patient risk stratification after radical prostatectomy.


Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Neoplásico/biossíntese , Transcriptoma , Humanos , Masculino , Análise Multivariada , Prognóstico , Neoplasias da Próstata/química , Neoplasias da Próstata/mortalidade , RNA Neoplásico/análise
11.
Sci Rep ; 9(1): 19961, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882946

RESUMO

Cancer research requires models closely resembling the tumor in the patient. Human tissue cultures can overcome interspecies limitations of animal models or the loss of tissue architecture in in vitro models. However, analysis of tissue slices is often limited to histology. Here, we demonstrate that slices are also suitable for whole transcriptome sequencing and present a method for automated histochemistry of whole slices. Tumor and peritumoral tissue from a patient with glioblastoma was processed to slice cultures, which were treated with standard therapy including temozolomide and X-irradiation. Then, RNA sequencing and automated histochemistry were performed. RNA sequencing was successfully accomplished with a sequencing depth of 243 to 368 x 106 reads per sample. Comparing tumor and peritumoral tissue, we identified 1888 genes significantly downregulated and 2382 genes upregulated in tumor. Treatment significantly downregulated 2017 genes, whereas 1399 genes were upregulated. Pathway analysis revealed changes in the expression profile of treated glioblastoma tissue pointing towards downregulated proliferation. This was confirmed by automated analysis of whole tissue slices stained for Ki67. In conclusion, we demonstrate that RNA sequencing of tissue slices is possible and that histochemical analysis of whole tissue slices can be automated which increases the usability of this preclinical model.


Assuntos
Glioblastoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histocitoquímica/métodos , Perfilação da Expressão Gênica/métodos , Glioblastoma/patologia , Humanos , Imuno-Histoquímica/métodos , Análise de Sequência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA