Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 26(14): 18513-18522, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114030

RESUMO

The interaction of spatially structured light fields with atomic media can generate spatial structures inscribed in the atomic populations and coherences, allowing for example the storage of optical images in atomic vapours. Typically, this involves coherent optical processes based on Raman or EIT transitions. Here we study the simpler situation of shaping atomic populations via spatially dependent optical depletion. Using a near resonant laser beam with a holographically controlled 3D intensity profile, we imprint 3D population structures into a thermal rubidium vapour. This 3D population structure is simultaneously read out by recording the spatially resolved fluorescence of an unshaped probe laser. We find that the reconstructed atomic population structure is largely complementary to the intensity structure of the control beam, however appears blurred due to global repopulation processes. We identify and model these mechanisms which limit the achievable resolution of the 3D atomic population. We expect this work to set design criteria for future 2D and 3D atomic memories.

2.
Opt Express ; 25(21): 25079-25089, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041179

RESUMO

Spatial structuring of the intensity, phase and polarisation of light is useful in a wide variety of modern applications, from microscopy to optical communications. This shaping is most commonly achieved using liquid crystal spatial light modulators (LC-SLMs). However, the inherent chromatic dispersion of LC-SLMs when used as diffractive elements presents a challenge to the extension of such techniques from monochromatic to broadband light. In this work we demonstrate a method of generating broadband vector beams with dynamically tunable intensity, phase and polarisation over a bandwidth of 100 nm. We use our system to generate radially and azimuthally polarised vector vortex beams carrying orbital angular momentum, and beams whose polarisation states span the majority of the Poincaré sphere. We characterise these broadband vector beams using spatially and spectrally resolved Stokes measurements, and detail the technical and fundamental limitations of our technique, including beam generation fidelity and efficiency. The broadband vector beam shaper that we demonstrate here may find use in applications such as ultrafast beam shaping and white light microscopy.

3.
Opt Express ; 24(6): 6249-64, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136818

RESUMO

Whether in art or for QR codes, images have proven to be both powerful and efficient carriers of information. Spatial light modulators allow an unprecedented level of control over the generation of optical fields by using digital holograms. There is no unique way of obtaining a desired light pattern however, leaving many competing methods for hologram generation. In this paper, we test six hologram generation techniques in the creation of a variety of modes as well as a photographic image: rating the methods according to obtained mode quality and power. All techniques compensate for a non-uniform mode profile of the input laser and incorporate amplitude scaling. We find that all methods perform well and stress the importance of appropriate spatial filtering. We expect these results to be of interest to those working in the contexts of microscopy, optical trapping or quantum image creation.

4.
Opt Express ; 18(22): 23121-32, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21164653

RESUMO

Dissipative solitons are self-localized states which can exist anywhere in a system with translational symmetry, but in real systems this translational symmetry is usually broken due to parasitic inhomogeneities leading to spatial disorder, pinning the soliton positions. We discuss the effects of semiconductor growth induced spatial disorder on the operation of a cavity soliton laser based on a vertical-cavity surface-emitting laser (VCSEL). We show that a refractive index variation induced by an external, suitably spatially modulated laser beam can be used to counteract the inherent disorder. In particular, it is demonstrated experimentally that the threshold of one cavity soliton can be lowered without influencing other cavity solitons making two solitons simultaneously bistable which were not without control. This proof of principle paves the way to achieve full control of large numbers of cavity solitons at the same time.

5.
Sci Rep ; 9(1): 5241, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918273

RESUMO

Scanning our surroundings has become one of the key challenges in automation. Effective and efficient position, distance and velocity sensing is key to accurate decision making in automated applications from robotics to driverless cars. Light detection and ranging (LiDAR) has become a key tool in these 3D sensing applications, where the time-of-flight (TOF) of photons is used to recover distance information. These systems typically rely on scanning of a laser spot to recover position information. Here we demonstrate a hybrid LiDAR approach which combines a multi-view camera system for position and distance information, and a simple (scanless) LiDAR system for velocity tracking and depth accuracy. We show that we are able to combine data from the two component systems to provide a compound image of a scene with position, depth and velocity data at more than 1 frame per second with depth accuracy of 2.5 cm or better. This hybrid approach avoids the bulk and expense of scanning systems while adding velocity information. We hope that this approach will offer a simpler, more robust alternative to 3D scanning systems for autonomous vehicles.

6.
Sci Rep ; 7(1): 3464, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615622

RESUMO

Single-pixel imaging is an alternate imaging technique particularly well-suited to imaging modalities such as hyper-spectral imaging, depth mapping, 3D profiling. However, the single-pixel technique requires sequential measurements resulting in a trade-off between spatial resolution and acquisition time, limiting real-time video applications to relatively low resolutions. Compressed sensing techniques can be used to improve this trade-off. However, in this low resolution regime, conventional compressed sensing techniques have limited impact due to lack of sparsity in the datasets. Here we present an alternative compressed sensing method in which we optimize the measurement order of the Hadamard basis, such that at discretized increments we obtain complete sampling for different spatial resolutions. In addition, this method uses deterministic acquisition, rather than the randomized sampling used in conventional compressed sensing. This so-called 'Russian Dolls' ordering also benefits from minimal computational overhead for image reconstruction. We find that this compressive approach performs as well as other compressive sensing techniques with greatly simplified post processing, resulting in significantly faster image reconstruction. Therefore, the proposed method may be useful for single-pixel imaging in the low resolution, high-frame rate regime, or video-rate acquisition.

7.
Nat Commun ; 7: 12010, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377197

RESUMO

Time-of-flight three-dimensional imaging is an important tool for applications such as object recognition and remote sensing. Conventional time-of-flight three-dimensional imaging systems frequently use a raster scanned laser to measure the range of each pixel in the scene sequentially. Here we show a modified time-of-flight three-dimensional imaging system, which can use compressed sensing techniques to reduce acquisition times, whilst distributing the optical illumination over the full field of view. Our system is based on a single-pixel camera using short-pulsed structured illumination and a high-speed photodiode, and is capable of reconstructing 128 × 128-pixel resolution three-dimensional scenes to an accuracy of ∼3 mm at a range of ∼5 m. Furthermore, by using a compressive sampling strategy, we demonstrate continuous real-time three-dimensional video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost three-dimensional imaging devices for precision ranging at wavelengths beyond the visible spectrum.

8.
Sci Rep ; 5: 10669, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26001092

RESUMO

Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a 'single-pixel camera' to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA