Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
FASEB J ; 35(8): e21828, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34325494

RESUMO

Since prenatal glucocorticoids (GC) excess increases the risk of metabolic dysfunctions in the offspring and its effect on ß-cell recovery capacity remains unknown we investigated these aspects in offspring from mice treated with dexamethasone (DEX) in the late pregnancy. Half of the pups were treated with streptozotocin (STZ) on the sixth postnatal day (PN). Functional and molecular analyses were performed in male offspring on PN25 and PN225. Prenatal DEX treatment resulted in low birth weight. At PN25, both the STZ-treated offspring developed hyperglycemia and had lower ß-cell mass, in parallel with higher α-cell mass and glucose intolerance, with no impact of prenatal DEX on such parameters. At PN225, the ß-cell mass was partially recovered in the STZ-treated mice, but they remained glucose-intolerant, irrespective of being insulin sensitive. Prenatal exposition to DEX predisposed adult offspring to sustained hyperglycemia and perturbed islet function (lower insulin and higher glucagon response to glucose) in parallel with exacerbated glucose intolerance. ß-cell-specific knockdown of the Hnf4α in mice from the DS group resulted in exacerbated glucose intolerance. We conclude that high GC exposure during the prenatal period exacerbates the metabolic dysfunctions in adult life of mice exposed to STZ early in life, resulting in a lesser ability to recover the islets' function over time. This study alerts to the importance of proper management of exogenous GCs during pregnancy and a healthy postnatal lifestyle since the combination of adverse factors during the prenatal and postnatal period accentuates the predisposition to metabolic disorders in adult life.


Assuntos
Dexametasona/toxicidade , Glucocorticoides/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Dexametasona/administração & dosagem , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Teste de Tolerância a Glucose , Insulina/farmacologia , Camundongos , Neoplasias Experimentais , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456900

RESUMO

Peptide DIIADDEPLT (Pep19) has been previously suggested to improve metabolic parameters, without adverse central nervous system effects, in a murine model of diet-induced obesity. Here, we aimed to further evaluate whether Pep19 oral administration has anti-obesogenic effects, in a well-established high-fat diet-induced obesity model. Male Swiss mice, fed either a standard diet (SD) or high-fat diet (HFD), were orally administrated for 30 consecutive days, once a day, with saline vehicle or Pep19 (1 mg/kg). Next, several metabolic, morphological, and behavioral parameters were evaluated. Oral administration of Pep19 attenuated HFD body-weight gain, reduced in approximately 40% the absolute mass of the endocrine pancreas, and improved the relationship between circulating insulin and peripheral insulin sensitivity. Pep19 treatment of HFD-fed mice attenuated liver inflammation, hepatic fat distribution and accumulation, and lowered plasma alanine aminotransferase activity. The inguinal fat depot from the SD group treated with Pep19 showed multilocular brown-fat-like cells and increased mRNA expression of uncoupling protein 1 (UCP1), suggesting browning on inguinal white adipose cells. Morphological analysis of brown adipose tissue (BAT) from HFD mice showed the presence of larger white-like unilocular cells, compared to BAT from SD, Pep19-treated SD or HFD mice. Pep19 treatment produced no alterations in mice behavior. Oral administration of Pep19 ameliorates some metabolic traits altered by diet-induced obesity in a Swiss mice model.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas do Tecido Nervoso , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Fenótipo
3.
Stress ; 23(4): 466-473, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32107952

RESUMO

Convincing evidence shows that stress is associated with the development and course of psychiatric and metabolic disorders. The hypothalamic-pituitary-adrenal (HPA) axis mediates the stress response, a cascade of events that culminate in the release of glucocorticoids from the adrenal cortex. Chronic hypercortisolism typically characterizes stress-related illnesses, such as depression, anxiety, and metabolic syndrome. Considering previous studies pointing that environmental enrichment (EE) mitigates the deleterious effects of stress on neurobiological systems, we hypothesized that EE can confer resiliency against prolonged glucocorticoid administration-induced behavioral and metabolic alterations in mice. In this regard, three-month-old male Swiss mice were exposed to a four-week period of standard environment (SE) or EE. After this period, still in the respective environments, dexamethasone was administered intraperitoneally (i.p.) at a dose of 4 mg/kg, for 21 consecutive days, in order to generate the emotional-related behavioral outcomes, as previously described. It is demonstrated herein that EE prevents the dexamethasone-induced anxiety-like and passive stress-coping behaviors, as observed in the open field and tail suspension tests. Moreover, EE mitigated the hyperproteinemia and body weight loss induced by excess dexamethasone and decreased basal glucose levels. Taken together, these results support the hypothesis that EE attenuates the effects of chronic administration of synthetic glucocorticoids in mice, a strategy that may be translated to the clinical perspective.


Assuntos
Meio Ambiente , Estresse Psicológico , Animais , Dexametasona/farmacologia , Sistema Hipotálamo-Hipofisário , Masculino , Camundongos , Sistema Hipófise-Suprarrenal
4.
Exp Physiol ; 104(3): 306-321, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578638

RESUMO

NEW FINDINGS: What is the central question of this study? What are the temporal responses of mitochondrial respiration and mitochondrial responsivity to insulin in soleus muscle fibres from mice during the development of obesity and insulin resistance? What is the main finding and its importance? Short- and long-term feeding with a high-fat diet markedly reduced soleus mitochondrial respiration and mitochondrial responsivity to insulin before any change in glycogen synthesis. Muscle glycogen synthesis and whole-body insulin resistance were present after 14 and 28 days, respectively. Our findings highlight the plasticity of mitochondria during the development of obesity and insulin resistance. ABSTRACT: Recently, significant attention has been given to the role of muscle mitochondrial function in the development of insulin resistance associated with obesity. Our aim was to investigate temporal alterations in mitochondrial respiration, H2 O2 emission and mitochondrial responsivity to insulin in permeabilized skeletal muscle fibres during the development of obesity in mice. Male Swiss mice (5-6 weeks old) were fed with a high-fat diet (60% calories from fat) or standard diet for 7, 14 or 28 days to induce obesity and insulin resistance. Diet-induced obese (DIO) mice presented with reduced glucose tolerance and hyperinsulinaemia after 7 days of high-fat diet. After 14 days, the expected increase in muscle glycogen content after systemic injection of glucose and insulin was not observed in DIO mice. At 28 days, blood glucose decay after insulin injection was significantly impaired. Complex I (pyruvate + malate) and II (succinate)-linked respiration and oxidative phosphorylation (ADP) were decreased after 7 days of high-fat diet and remained low in DIO mice after 14 and 28 days of treatment. Moreover, mitochondria from DIO mice were incapable of increasing respiratory coupling and ADP responsivity after insulin stimulation in all observed periods. Markers of mitochondrial content were reduced only after 28 days of treatment. The mitochondrial H2 O2 emission profile varied during the time course of DIO, with a reduction of H2 O2 emission in the early stages of DIO and an increased emission after 28 days of treatment. Our data demonstrate that DIO promotes transitory alterations in mitochondrial physiology during the early and late stages of insulin resistance related to obesity.


Assuntos
Respiração Celular/efeitos dos fármacos , Insulina/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Obesidade/fisiopatologia , Descanso/fisiologia , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos
5.
J Cell Physiol ; 233(1): 486-496, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28370189

RESUMO

In the present study, we investigated the relationship between early life protein malnutrition-induced redox imbalance, and reduced glucose-stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal-protein-diet (17%-protein, NP) or to a low-protein-diet (6%-protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H2 O2 ), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn-superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre-incubated with H2 O2 and/or N-acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H2 O2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre-incubated with H2 O2 (100 µM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N-acetylcysteine.


Assuntos
Glicemia/metabolismo , Dieta com Restrição de Proteínas , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Estresse Oxidativo , Desnutrição Proteico-Calórica/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes/farmacologia , Catalase/genética , Catalase/metabolismo , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Estado Nutricional , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Desnutrição Proteico-Calórica/sangue , Desnutrição Proteico-Calórica/genética , Desnutrição Proteico-Calórica/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fatores de Tempo
6.
Int J Exp Pathol ; 98(6): 329-340, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226508

RESUMO

Sepsis is associated with high mortality. Both critically ill humans and animal models of sepsis exhibit changes in their glucose homeostasis, that is, hypoglycaemia, with the progression of infection. However, the relationship between basal glycaemia, glucose tolerance and insulin sensitivity is not well understood. Thus, we aimed to evaluate this glucose homeostasis triad at the late stage of sepsis (24 h after surgery) in male Swiss mice subjected to lethal and sublethal sepsis by the caecal ligation and puncture (CLP) model. The percentage of survival 24 h after CLP procedure in the Lethal and Sublethal groups was around 66% and 100% respectively. Both Lethal and Sublethal groups became hypoglycaemic in fasting and fed states 24 h after surgery. The pronounced fed hypoglycaemia in the Lethal group was not due to worsening anorexic behaviour or hepatic inability to deliver glucose in relation to the Sublethal group. Reduction in insulin sensitivity in CLP mice occurred in a lethality-dependent manner and was not associated with glucose intolerance. Analysis of oral and intraperitoneal glucose tolerance tests, as well as the gastrointestinal motility data, indicated that CLP mice had reduced intestinal glucose absorption. Altogether, we suggest cessation of appetite and intestinal glucose malabsorption are key contributors to the hypoglycaemic state observed during experimental severe sepsis.


Assuntos
Glicemia/biossíntese , Ceco/metabolismo , Homeostase/fisiologia , Sepse/mortalidade , Animais , Ceco/cirurgia , Modelos Animais de Doenças , Hipoglicemiantes , Resistência à Insulina , Ligadura/métodos , Fígado/metabolismo , Masculino , Camundongos , Punções/métodos
7.
Reproduction ; 152(6): 795-808, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27679864

RESUMO

This study evaluated the impact of a high-fat diet (HFD) during different stages of rat life, associated or not with maternal obesity, on the content of sex steroid hormones and morphophysiology of Leydig cells. The following periods of development were examined: gestation (O1), gestation and lactation (O2), from weaning to adulthood (O3), from lactation to adulthood (O4), gestation to adulthood (O5), and after sexual maturation (O6). The HFD contained 20% unsaturated fat, whereas the control diet had 4% fat. Maternal obesity was induced by feeding HFD 15 weeks before mating. All HFD groups presented increased body weight, hyperinsulinemia and reduced insulin sensitivity. Except for O1, all HFD groups exhibited a higher adiposity index, hyperleptinemia, reduced testosterone and estradiol testicular levels, and decreased testicular 17ß-HSD enzyme . Morphometrical analyses indicated atrophy of Leydig cells in the O2 group. Myelin vesicles were observed in the mitochondrial matrix of Leydig cells in O3, O4, O5 and O6, and autophagosomes containing mitochondria were found in O5 and O6. In conclusion, HFD feeding, before or after sexual maturation, reduces the functional capacity of rat Leydig cells. Maternal obesity associated with HFD during pregnancy/lactation prejudices Leydig cell steroidogenesis and induces its atrophy in adulthood, even if it is replaced by a conventional diet at later stages of life. Regardless of the life period of exposure to HFD, deregulation of leptin is the main factor related to steroidogenic impairment of Leydig cells, and, in groups exposed for longer periods (O3, O4, O5 and O6), this is worsened by structural damage and mitochondrial degeneration of these cells.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hormônios Esteroides Gonadais/biossíntese , Resistência à Insulina , Células Intersticiais do Testículo/patologia , Obesidade/patologia , Adiposidade , Animais , Feminino , Células Intersticiais do Testículo/metabolismo , Masculino , Obesidade/metabolismo , Gravidez , Ratos , Ratos Wistar , Aumento de Peso
8.
Int J Exp Pathol ; 96(1): 21-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25529509

RESUMO

Recent studies have shown a positive association of cancer and obesity, but the morphological and molecular mechanisms involved in this relationship are still unknown. This study analysed the impact of long-term obesity on rat prostate, focusing on stromal changes. Male adult Wistar rats were treated with high-fat diet to induce obesity, while the control group received a balanced diet. After 30 weeks of feeding, the ventral prostate was analysed by immunohistochemistry for cell proliferation, smooth muscle α-actin, vimentin, chondroitin sulphate and metalloproteinases (MMP-2 and 9). The content of androgen receptor (AR), oestrogen receptors (ERs) and vascular endothelial growth factor (VEGF) was measured by Western blotting, and activity of catalase and Glutathione-S-Transferase (GST) were quantified by enzymatic assay. Long-term obesity decreased testosterone plasma levels by 70% and resulted in stromal prostate hyperplasia, as evidenced by increased collagen fibres. Such stromal hyperplasia was associated with increased number of blood vessels and raised VEGF content, and increased expression of chondroitin sulphate, vimentin, α-actin and MMP-9. In spite of the high cell density in prostate, the proliferative activity was lower in the prostates of obese rats, indicating that hyperplasia was established during the early phases in this obesity model. AR levels increased significantly, whereas the ERα decreased in this group. Moreover, the levels of catalase and GST were changed considerably. These findings indicate that long-term obesity, besides disturbing the antioxidant control, causes intense stromal remodelling and release of factors that create an environment that can promote proliferative disorders in the gland, culminating with diffuse hyperplasia.


Assuntos
Matriz Extracelular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Obesidade/complicações , Próstata/enzimologia , Hiperplasia Prostática/etiologia , Células Estromais/enzimologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Catalase/metabolismo , Proliferação de Células , Microambiente Celular , Modelos Animais de Doenças , Glutationa Transferase/metabolismo , Insulina/sangue , Masculino , Malondialdeído/metabolismo , Oxirredução , Próstata/patologia , Hiperplasia Prostática/sangue , Hiperplasia Prostática/enzimologia , Hiperplasia Prostática/patologia , Ratos Wistar , Receptores Androgênicos/metabolismo , Fatores de Risco , Células Estromais/patologia , Testosterona/sangue , Fatores de Tempo , Regulação para Cima
9.
Int J Exp Pathol ; 95(5): 351-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25186305

RESUMO

Glucocorticoids (GCs) induce insulin resistance (IR), a condition known to alter oral homeostasis. This study investigated the effects of long-term dexamethasone administration on morphofunctional aspects of salivary glands. Male Wistar rats received daily injections of dexamethasone [0.1 mg/kg body weight (b.w.), intraperitoneally] for 10 days (DEX), whereas control rats received saline. Subsequently, glycaemia, insulinaemia, insulin secretion and salivary flow were analysed. The parotid and submandibular glands were collected for histomorphometric evaluation and Western blot experiments. The DEX rats were found to be normoglycaemic, hyperinsulinaemic, insulin resistant and glucose intolerant (P < 0.05). DEX rat islets secreted more insulin in response to glucose (P < 0.05). DEX rats had significant reductions in the masses of the parotid (29%) and submandibular (16%) glands (P < 0.05) that was associated with reduced salivary flux rate. The hypotrophy in both glands observed in the DEX group was associated with marked reduction in the volume of the acinar cells in these glands of 50% and 26% respectively (P < 0.05). The total number of acinar cells was increased in the submandibular glands of the DEX rats (P < 0.05) but not in the parotid glands. The levels of proteins related to insulin and survival signalling in both glands did not differ between the groups. In conclusion, the long-term administration of dexamethasone caused IR, which was associated with significant reductions in both mass and flux rate of the salivary glands. The parotid and submandibular glands exhibited reduced acinar cell volume; however, the submandibular glands displayed acinar hyperplasia, indicating a gland-specific response to GCs. Our data emphasize that GC-based therapies and insulin-resistant states have a negative impact on salivary gland homeostasis.


Assuntos
Células Acinares/citologia , Dexametasona/farmacologia , Glândula Parótida/efeitos dos fármacos , Glândulas Salivares/efeitos dos fármacos , Glândula Submandibular/patologia , Células Acinares/efeitos dos fármacos , Animais , Glicemia/metabolismo , Forma Celular , Glucocorticoides/metabolismo , Insulina/metabolismo , Masculino , Glândula Parótida/metabolismo , Ratos , Ratos Wistar , Glândulas Salivares/metabolismo , Glândula Submandibular/metabolismo , Tempo
10.
Can J Physiol Pharmacol ; 92(10): 867-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25272090

RESUMO

The disruption to glucose homeostasis upon glucocorticoid (GC) treatment in adult male rats has not been fully characterized in older rats or in females. Thus, we evaluated the age- and gender-related changes in glucose homeostasis in GC-treated rats. We injected male and female rats at 3 months and 12 months of age with either dexamethasone (1.0 mg/kg body mass, intraperitoneally) or saline, daily for 5 days. All of the GC-treated rats had decreased body mass and food intake, and adrenal hypotrophy. Increased glycemia was observed in all of the GC-treated groups and only the 3-month-old female rats were not glucose intolerant. Dexamethasone treatment resulted in hyperinsulinemia and hypertriacylglyceridemia in all of the GC-treated rats. The glucose-stimulated insulin secretion (GSIS) was higher in all of the dexamethasone-treated animals, but it was less pronounced in the older animals. The ß-cell mass was increased in the younger male rats treated with dexamethasone. We conclude that dexamethasone treatment induces glucose intolerance in both the 3- and 12-month-old male rats as well as hyperinsulinemia and augmented GSIS. Three-month-old female rats are protected from glucose intolerance caused by GC, whereas 12-month-old female rats developed the same complications that were present in 3- and 12-month-old male rats.


Assuntos
Anti-Inflamatórios/efeitos adversos , Glucocorticoides/efeitos adversos , Glucose/metabolismo , Imunossupressores/efeitos adversos , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/patologia , Fatores Etários , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Dexametasona/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Intolerância à Glucose/induzido quimicamente , Homeostase , Hiperinsulinismo/induzido quimicamente , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Fígado/metabolismo , Masculino , Ratos Wistar , Fatores Sexuais , Triglicerídeos/sangue
11.
Indian J Exp Biol ; 52(10): 972-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25345246

RESUMO

Arjunolic acid (AA) obtained from plants of the Combretaceae family has shown anti-diabetic effects. Here, we analyzed whether the diabetogenic effects of dexamethasone (DEX) treatment on glucose homeostasis may be prevented or attenuated by the concomitant administration of AA. Adult Wistar rats were assigned to the following groups: vehicle-treated (Ctl), DEX-treated (1 mg/kg body weight intraperitoneally for 5 days) (Dex), AA-treated (30 mg/kg body weight by oral gavage twice per day) (Aa), AA treatment previous to and concomitant to DEX treatment (AaDex), and AA treatment after initiation of DEX treatment (DexAa). AA administration significantly ameliorated (AaDex) (P > 0.05), but did not attenuate (DexAa), the glucose intolerance induced by DEX treatment. AA did not prevent or attenuate the elevation in hepatic glycogen and triacylglycerol content caused by DEX treatment. All DEX-treated rats exhibited hepatic steatosis that seemed to be more pronounced when associated with AA treatment given for a prolonged period (AaDex). Markers of liver function and oxidative stress were not significantly altered among the groups. Therefore, AA administered for a prolonged period partially prevents the glucose intolerance induced by DEX treatment, but it fails to produce this beneficial effect when given after initiation of GC treatment. Since AA may promote further hepatic steatosis when co-administered with GCs, care is required when considering this phytochemical as a hypoglycemiant and/or insulin-sensitizing agent.


Assuntos
Glicemia/efeitos dos fármacos , Glucocorticoides/sangue , Triterpenos/farmacologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Glucocorticoides/metabolismo , Insulina/metabolismo , Lipídeos/sangue , Fígado/química , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar
12.
Sleep ; 47(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38788154

RESUMO

STUDY OBJECTIVES: Sleep deprivation is a potential risk factor for metabolic diseases, including obesity and type 2 diabetes. We evaluated the impacts of moderate chronic sleep deprivation on glucose and lipid homeostasis in adult rats. METHODS: Wistar rats (both sexes) were sleep-perturbed daily for 2 hours at the early (06:00-08:00) and the late light cycle (16:00-18:00) five days a week (except weekends) for 4 weeks. RESULTS: Sleep perturbation (SP) resulted in reduced body weight gain in both sexes, associated with altered food intake and reduced adiposity. SP did not alter the short- or long-term memories or cause anxiogenic behavior. No major changes were observed in the plasma insulin, leptin, triacylglycerol, non-esterified fatty acids, and blood glucose upon SP. After SP, females exhibited a transitory glucose intolerance, while males became glucose intolerant at the end of the experimental period. Male rats also developed higher insulin sensitivity at the end of the SP protocol. Morphometric analyses revealed no changes in hepatic glycogen deposition, pancreatic islet mass, islet-cell distribution, or adrenal cortex thickness in SP rats from both sexes, except for lower adipocyte size compared with controls. We did not find homogeneous changes in the relative expression of circadian and metabolic genes in muscle or hepatic tissues from the SP rats. CONCLUSIONS: Moderate chronic SP reduces visceral adiposity and causes glucose intolerance with a more pronounced impact on male rats, reinforcing the metabolic risks of exposure to sleep disturbances.


Assuntos
Glicemia , Homeostase , Resistência à Insulina , Ratos Wistar , Privação do Sono , Animais , Privação do Sono/fisiopatologia , Privação do Sono/complicações , Privação do Sono/metabolismo , Masculino , Feminino , Ratos , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Glicemia/metabolismo , Metabolismo dos Lipídeos , Insulina/metabolismo , Insulina/sangue , Intolerância à Glucose/fisiopatologia , Adiposidade/fisiologia , Ingestão de Alimentos/fisiologia , Leptina/sangue
13.
Drug Deliv Transl Res ; 13(11): 2948-2959, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37208563

RESUMO

Mometasone furoate (MF) is a synthetic glucocorticoid used clinically to treat specific inflammatory disorders including superior and inferior respiratory tract. Due to its poor bioavailability we further investigated whether nanoparticles (NPs) made of zein protein may constitute a safe and effective choice to incorporate MF. Thus, in this work, we loaded MF into zein NPs aiming to evaluate possible advantages that could result from oral delivery and extend the range of MF application such as inflammatory gut diseases. MF-loaded zein NPs presented an average size in the range of 100 and 135 nm, narrow size distribution (polydispersity index < 0.300), zeta potential of around + 10 mV and association efficiency of MF over 70%. Transmission electron microscopy imaging revealed that NPs had a round shape and presented a smooth surface. The zein NPs showed low MF release in a buffer that mimics the gastric condition (pH = 1.2) and slower and controlled MF release in the intestinal condition (pH = 6.8). The short and intermediate safety of zein NPs was confirmed assessing the incubation against Caco-2 and HT29-MTX intestinal cells up to 24 h. Permeability studies of MF across Caco-2/HT29-MTX co-culture monolayer evidenced that zein NPs modulated MF transport across cell monolayer resulting in a stronger and prolonged interaction with mucus, potentially extending the time of absorption and overall local and systemic bioavailability. Overall, zein NPs showed to be suitable to carry MF to the intestine and future studies can be developed to investigate the use of MF-loaded zein NPs to treat intestinal inflammatory diseases.


Assuntos
Nanopartículas , Zeína , Humanos , Furoato de Mometasona , Células CACO-2 , Portadores de Fármacos
14.
Biochem Pharmacol ; 210: 115486, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893817

RESUMO

BACKGROUND: Exogenous glucocorticoids (CGs) possess relevant therapeutic effects but exert diabetogenic actions when in excess. Thus, ligands with potential therapeutic applications and fewer adverse effects are needed. To this, we analyzed whether mometasone furoate (MF), a CG expected to cause fewer side effects, given through systemic routes, could maintain the anti-inflammatory actions without relevant repercussions on metabolism. METHODS: The anti-inflammatory effect of MF was evaluated with both peritonitis and colitis models in rodents. Glucose and lipid metabolism were investigated in male and female rats treated daily with MF with different doses and routes of administration for seven days. The involvement of glucocorticoid receptor (GR) on MF actions was assessed in animals pretreated with mifepristone. Also, the potential reversibility of the adverse effects was assessed. Dexamethasone was used as a positive control. RESULTS: MF treatment resulted in glucose intolerance in male rats treated through intraperitoneal (ip) but not oral gavage route (og). In female rats, none of the routes led to glucose intolerance. MF treatment attenuated insulin sensitivity and increased pancreatic ß-cell mass, regardless of the sex and route of administration. MF treatment through og route did not result in dyslipidemia, as observed in rats treated through the ip route (both sexes). The anti-inflammatory and metabolic adverse effects of MF were GR-dependent, and metabolic outcomes altered by MF administration were reversible. CONCLUSION: MF maintains anti-inflammatory activity when administered by systemic routes and exerts less impact on metabolism when administered orally in male and female rats, effects that are GR-dependent and reversible. Category: Metabolic Disorders and Endocrinology.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Intolerância à Glucose , Pregnadienodiois , Masculino , Feminino , Ratos , Animais , Furoato de Mometasona , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/tratamento farmacológico , Pregnadienodiois/efeitos adversos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Glucocorticoides/toxicidade , Administração por Inalação
15.
Environ Pollut ; 316(Pt 2): 120633, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370973

RESUMO

Understanding the individual and global impact of pesticides on human physiology and the different stages of life is still a challenge in environmental health. We analyzed here whether administration of the organophosphate insecticide malathion before pregnancy could affect glucose homeostasis during pregnancy and, in addition, generate possible later consequences in mothers and offspring. For this, adult Wistar rats were allocated into two groups and were treated daily (intragastric) with malathion (14 or 140 mg/kg, body mass (bm)) for 21-25 days. Corn oil was used as vehicle in the Control group. Subgroups were defined based on the absence (nulliparous) or presence (pregnant) of a copulatory plug. Pregnant rats were followed by an additional period of 2 months after the term (post-term), without continuing malathion treatment. Fetuses and adult offspring of males and females were also evaluated. We ran an additional experimental design with rats exposed to malathion before pregnancy at a dose of 0.1 mg/kg bm. Malathion exposure resulted in glucose intolerance in the mothers during pregnancy and post-term period, regardless of the exposure dose. This was accompanied by increased visceral adipose tissue mass, dyslipidemia, unchanged pancreatic ß-cell mass, and varying insulin responses to glucose in vivo. The number of total newborns and birthweight was not affected by malathion exposure. Adult offspring from both sexes also became glucose-intolerant, regardless of the pesticide dose their dams were exposed to. This alteration could be associated with changes at the epigenomic level, as reduced hepatic mRNA content of DNA methylases and demethylases was found. We demonstrated that periconceptional exposure to malathion with doses aiming to mimic from work environment to indirect contamination predisposes progenitors and offspring rats to glucose intolerance. Thus, we conclude that subchronic exposure to malathion is a risk factor for gestational diabetes and prediabetes later in life.


Assuntos
Intolerância à Glucose , Efeitos Tardios da Exposição Pré-Natal , Recém-Nascido , Gravidez , Masculino , Feminino , Ratos , Animais , Humanos , Malation/toxicidade , Glicemia , Ratos Wistar , Homeostase , Glucose , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
16.
Life Sci ; 322: 121660, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011876

RESUMO

AIMS: Investigate whether the coadministration of olanzapine exacerbates the diabetogenic effects of dexamethasone, two agents used in the antiemetic cocktails indicated to mitigate the adverse effects of chemotherapy. MAIN METHODS: Adult Wistar rats (both sexes) were treated daily with dexamethasone (1 mg/kg, body mass (b.m.), intraperitoneal (i.p.)) with or without olanzapine (10 mg/kg, b.m., orogastric (o.g.)) for 5 consecutive days. During and at the end of the treatment, we evaluated biometric data and parameters involving glucose and lipid metabolism. KEY FINDINGS: Dexamethasone treatment resulted in glucose and lipid intolerance, higher plasma insulin and triacylglycerol levels, higher content of hepatic glycogen and fat, and higher islet mass in both sexes. These changes were not exacerbated by concomitant treatment with olanzapine. However, coadministration of olanzapine worsened the weight loss and plasma total cholesterol in males, while in females resulted in lethargy, higher plasma total cholesterol, and higher hepatic triacylglycerol release. SIGNIFICANCE: Coadministration of olanzapine does not exacerbate any diabetogenic dexamethasone effect on glucose metabolism and exerts a minor impact on the lipid homeostasis of rats. Our data favor the addition of olanzapine in the antiemetic cocktail considering the low incidence of metabolic adverse effects for the period and dosage analyzed in male and female rats.


Assuntos
Antieméticos , Antipsicóticos , Diabetes Mellitus , Ratos , Masculino , Feminino , Animais , Olanzapina/toxicidade , Ratos Wistar , Glicemia/metabolismo , Glucose/metabolismo , Triglicerídeos , Dexametasona/toxicidade , Colesterol , Benzodiazepinas/farmacologia , Antipsicóticos/farmacologia
17.
Life Sci ; 307: 120854, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917939

RESUMO

AIMS: Synthetic glucocorticoids, including dexamethasone (DEX), are clinically prescribed due to their immunoregulatory properties. In excess they can perturb glucose homeostasis, with individuals predisposed to glucose intolerance more sensitive to these negative effects. While DEX is known to negatively impact ß-cell function, it is unclear how. Hence, our aim was to investigate the effect of DEX on ß-cell function, both alone and in combination with a diabetogenic milieu in the form of elevated glucose and palmitate. MAIN METHODS: Human pancreatic EndoC-ßH1 cells were cultured in the presence of high glucose and palmitate (glucolipotoxicity) and/or a pharmacological concentration of DEX, before functional and molecular analyses. KEY FINDINGS: Either treatment alone resulted in reduced insulin content and secretion, while the combination of DEX and glucolipotoxicity promoted a strong synergistic effect. These effects were associated with reduced insulin biosynthesis, likely due to downregulation of PDX1, MAFA, and the proinsulin converting enzymes, as well as reduced ATP response upon glucose stimulation. Genome-wide DNA methylation analysis found changes on PDE4D, MBNL1 and TMEM178B, all implicated in ß-cell function, after all three treatments. DEX alone caused very strong demethylation of the glucocorticoid-regulated gene ZBTB16, also known to influence the ß-cell, while the combined treatment caused altered methylation of many known ß-cell regulators and diabetes candidate genes. SIGNIFICANCE: DEX treatment and glucolipotoxic conditions separately alter the ß-cell epigenome and function. The combination of both treatments exacerbates these changes, showing that caution is needed when prescribing potent glucocorticoids in patients with dysregulated metabolism.


Assuntos
Glucocorticoides , Células Secretoras de Insulina , Trifosfato de Adenosina/metabolismo , Dexametasona/metabolismo , Dexametasona/toxicidade , Epigenoma , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Palmitatos/farmacologia , Proinsulina/metabolismo , Proinsulina/farmacologia
18.
Physiol Behav ; 249: 113765, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35227701

RESUMO

Overexposure to glucocorticoids during gestation can lead to long-term mental disorders. Given the higher prevalence of depression in females, we investigated whether late gestational administration of dexamethasone could generate a depressive-like phenotype in the adult female offspring and if vitamin D could have a neuroprotective effect in this context. Pregnant rats received vitamin D (VitD, 500 IU/day) or vehicle (CTL) during gestation. Other pregnant rats received dexamethasone (Dex 0.1 mg/kg/ - 14th to the 19th gestational day) or dexamethasone + vitamin D (DexVitD). The offspring were tested for anhedonia (sucrose preference) and depressive-like behavior (forced swimming test) at postnatal months (PNM) 3, 6 and 12. Components of the serotonergic system, as well as glucocorticoids' receptors, were evaluated in the dorsal raphe nucleus at PNM 6 and 12. Prenatal vitamin D and dexamethasone increased sucrose preference at PNM 12. Prenatal vitamin D had an antidepressant-like effect at PNM 3 in rats overexposed to dexamethasone. However, at PNM 12, this effect was blunted in the DexVitD group. Prenatal dexamethasone reduced the protein content of SERT, TPH, and 5-HT1A receptors in the dorsal raphe nucleus at 6 but not at 12 PNM. The glucocorticoids' receptors expression was similar in all groups. We concluded that prenatal overexposure to dexamethasone does not change emotional behaviors in females, but it blunts the antidepressant-like effect of gestational vitamin D in an age-dependent manner. The antidepressant-like activity of vitamin D in the offspring was not related either to alterations of the serotonergic system or the glucocorticoids' receptors expression in the dorsal raphe nucleus.


Assuntos
Dexametasona , Glucocorticoides , Efeitos Tardios da Exposição Pré-Natal , Vitamina D , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Dexametasona/efeitos adversos , Dexametasona/farmacologia , Feminino , Glucocorticoides/efeitos adversos , Glucocorticoides/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Wistar , Receptores de Glucocorticoides , Sacarose , Vitamina D/metabolismo , Vitamina D/farmacologia
19.
J Gerontol A Biol Sci Med Sci ; 77(3): 405-415, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562079

RESUMO

Aging is associated with a decline in peripheral insulin sensitivity and an increased risk of impaired glucose tolerance and type 2 diabetes. During conditions of reduced insulin sensitivity, pancreatic ß cells undergo adaptive responses to increase insulin secretion and maintain euglycemia. However, the existence and nature of ß-cell adaptations and/or alterations during aging are still a matter of debate. In this study, we investigated the effects of aging on ß-cell function from control (3-month-old) and aged (20-month-old) mice. Aged animals were further categorized into 2 groups: high insulin sensitive (aged-HIS) and low insulin sensitive (aged-LIS). Aged-LIS mice were hyperinsulinemic, glucose intolerant, and displayed impaired glucose-stimulated insulin and C-peptide secretion, whereas aged-HIS animals showed characteristics in glucose homeostasis similar to controls. In isolated ß cells, we observed that glucose-induced inhibition of KATP channel activity was reduced with aging, particularly in the aged-LIS group. Glucose-induced islet NAD(P)H production was decreased in aged mice, suggesting impaired mitochondrial function. In contrast, voltage-gated Ca2+ currents were higher in aged-LIS ß cells, and pancreatic islets of both aged groups displayed increased glucose-induced Ca2+ signaling and augmented insulin secretion compared with controls. Morphological analysis of pancreas sections also revealed augmented ß-cell mass with aging, especially in the aged-LIS group, as well as ultrastructural ß-cell changes. Altogether, these findings indicate that aged mouse ß cells compensate for the aging-induced alterations in the stimulus-secretion coupling, particularly by adjusting their Ca2+ influx to ensure insulin secretion. These results also suggest that decreased peripheral insulin sensitivity exacerbates the effects of aging on ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas , Envelhecimento , Animais , Cálcio , Glucose , Insulina/farmacologia , Ilhotas Pancreáticas/fisiologia , Masculino , Camundongos
20.
Artigo em Inglês | MEDLINE | ID: mdl-35551683

RESUMO

Objective: To evaluate the effect of sitagliptin treatment in early type 2 diabetes mellitus (T2DM) and the impact of different macronutrient compositions on hormones and substrates during meal tolerance tests (MTT). Methods: Half of the drug-naive patients with T2DM were randomly assigned for treatment with 100 mg of sitagliptin, q.d., or placebo for 4 weeks and then submitted to 3 consecutive MTT intercalated every 48 h. The MTTs differed in terms of macronutrient composition, with 70% of total energy from carbohydrates, proteins, or lipids. After 4 weeks of washout, a crossover treatment design was repeated. Both patients and researchers were blinded, and a repeated-measures ANOVA was employed for statistical analysis. Results: Sitagliptin treatment reduced but did not normalize fasting and post-meal glucose values in the three MTTs, with lowered area-under-glucose-curve values varying from 7% to 15%. The sitagliptin treatment also improved the insulinogenic index (+86%) and the insulin/glucose (+25%), glucagon-like peptide-1/glucose (+46%) incremental area under the curves. Patients with early T2DM maintained the lowest glucose excursion after a protein- or lipid-rich meal without any major change in insulin, C-peptide, glucagon, or NEFA levels. Conclusion: We conclude that sitagliptin treatment is tolerable and contributes to better control of glucose homeostasis in early T2DM, irrespective of macronutrient composition. The blood glucose excursion during meal ingestion is minimal in protein- or fat-rich meals, which can be a positive ally for the management of T2DM. Clinical trial no: NCT00881543.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA