Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R320-R328, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913688

RESUMO

The modifications of the hemodynamic system and hydromineral metabolism are physiological features characterizing a normal gestation. Thus, the ability to expand plasma volume without increasing the level of blood pressure is necessary for the correct perfusion of the placenta. The kidney is essential in this adaptation by reabsorbing avidly sodium and fluid. In this study, we observed that the H,K-ATPase type 2 (HKA2), an ion pump expressed in kidney and colon and already involved in the control of the K+ balance during gestation, is also required for the correct plasma volume expansion and to maintain normal blood pressure. Indeed, compared with WT pregnant mice that exhibit a 1.6-fold increase of their plasma volume, pregnant HKA2-null mice (HKA2KO) only modestly expand their extracellular volume (×1.2). The renal expression of the epithelial Na channel (ENaC) α- and γ-subunits and that of the pendrin are stimulated in gravid WT mice, whereas the Na/Cl- cotransporter (NCC) expression is downregulated. These modifications are all blunted in HKA2KO mice. This impeded renal adaptation to gestation is accompanied by the development of hypotension in the pregnant HKA2KO mice. Altogether, our results showed that the absence of the HKA2 during gestation leads to an "underfilled" situation and has established this transporter as a key player of the renal control of salt and potassium metabolism during gestation.


Assuntos
Pressão Sanguínea , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Rim/enzimologia , Volume Plasmático , Potássio/metabolismo , Sódio/metabolismo , Animais , Aquaporina 2/metabolismo , Colo/enzimologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , ATPase Trocadora de Hidrogênio-Potássio/deficiência , ATPase Trocadora de Hidrogênio-Potássio/genética , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
2.
J Am Soc Nephrol ; 30(5): 811-823, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30967423

RESUMO

BACKGROUND: Mutations in four genes, WNK lysine deficient protein kinase 1 and 4 (WNK1 and WNK4), kelch like family member 3 (KLHL3), or Cullin 3 (CUL3), can result in familial hyperkalemic hypertension (FHHt), a rare Mendelian form of human arterial hypertension. Although all mutations result in an increased abundance of WNK1 or WNK4, all FHHt-causing CUL3 mutations, resulting in the skipping of exon 9, lead to a more severe phenotype. METHODS: We created and compared two mouse models, one expressing the mutant Cul3 protein ubiquitously (pgk-Cul3∆9) and the other specifically in vascular smooth muscle cells (SM22-Cul3∆9). We conducted pharmacologic investigations on isolated aortas and generated stable and inducible HEK293 cell lines that overexpress the wild-type Cul3 or mutant Cul3 (Cul3∆9) protein. RESULTS: As expected, pgk-Cul3∆9 mice showed marked hypertension with significant hyperkalemia, hyperchloremia and low renin. BP increased significantly in SM22-Cul3∆9 mice, independent of any measurable effect on renal transport. Only pgk-Cul3∆9 mice displayed increased expression of the sodium chloride cotransporter and phosphorylation by the WNK-SPAK kinases. Both models showed altered reactivity of isolated aortas to phenylephrine and acetylcholine, as well as marked acute BP sensitivity to the calcium channel blocker amlodipine. Aortas from SM22-Cul3∆9 mice showed increased expression of RhoA, a key molecule involved in regulation of vascular tone, compared with aortas from control mice. We also observed increased RhoA abundance and t1/2 in Cul3∆9-expressing cells, caused by decreased ubiquitination. CONCLUSIONS: Mutations in Cul3 cause severe hypertension by affecting both renal and vascular function, the latter being associated with activation of RhoA.


Assuntos
Pressão Arterial/genética , Proteínas Culina/genética , Hipertensão/genética , Mutação , Análise de Variância , Animais , Modelos Animais de Doenças , Humanos , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Fosforilação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Distribuição Aleatória , Ubiquitinação/genética
3.
Am J Physiol Renal Physiol ; 308(8): F799-808, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25587121

RESUMO

Unique situations in female physiology require volume retention. Accordingly, a dimorphic regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) has been reported, with a higher activity in females than in males. However, little is known about the hormones and mechanisms involved. Here, we present evidence that estrogens, progesterone, and prolactin stimulate NCC expression and phosphorylation. The sex difference in NCC abundance, however, is species dependent. In rats, NCC phosphorylation is higher in females than in males, while in mice both NCC expression and phosphorylation is higher in females, and this is associated with increased expression and phosphorylation of full-length STE-20 proline-alanine-rich kinase (SPAK). Higher expression/phosphorylation of NCC was corroborated in humans by urinary exosome analysis. Ovariectomy in rats resulted in decreased expression and phosphorylation of the cotransporter and promoted the shift of SPAK isoforms toward the short inhibitory variant SPAK2. Conversely, estradiol or progesterone administration to ovariectomized rats restored NCC phosphorylation levels and shifted SPAK expression and phosphorylation towards the full-length isoform. Estradiol administration to male rats induced a significant increase in NCC phosphorylation. NCC is also modulated by prolactin. Administration of this peptide hormone to male rats induced increased phosphorylation of NCC, an effect that was observed even using the ex vivo kidney perfusion strategy. Our results indicate that estradiol, progesterone, and prolactin, the hormones that are involved in sexual cycle, pregnancy and lactation, upregulate the activity of NCC.


Assuntos
Estradiol/metabolismo , Rim/metabolismo , Ovário/metabolismo , Progesterona/metabolismo , Prolactina/metabolismo , Animais , Estradiol/administração & dosagem , Terapia de Reposição de Estrogênios , Feminino , Humanos , Isoenzimas , Rim/efeitos dos fármacos , Masculino , Camundongos Knockout , Ovariectomia , Fosforilação , Progesterona/administração & dosagem , Prolactina/administração & dosagem , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Wistar , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Fatores Sexuais , Transdução de Sinais , Membro 3 da Família 12 de Carreador de Soluto/efeitos dos fármacos , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Regulação para Cima
4.
Acta Physiol (Oxf) ; 239(2): e14046, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37665159

RESUMO

OBJECTIVE: To understand the mechanisms involved in the response to a low-K+ diet (LK), we investigated the role of the growth factor GDF15 and the ion pump H,K-ATPase type 2 (HKA2) in this process. METHODS: Male mice of different genotypes (WT, GDF15-KO, and HKA2-KO) were fed an LK diet for different periods of time. We analyzed GDF15 levels, metabolic and physiological parameters, and the cellular composition of collecting ducts. RESULTS: Mice fed an LK diet showed a 2-4-fold increase in plasma and urine GDF15 levels. Compared to WT mice, GDF15-KO mice rapidly developed hypokalemia due to impaired renal adaptation. This is related to their 1/ inability to increase the number of type A intercalated cells (AIC) and 2/ absence of upregulation of H,K-ATPase type 2 (HKA2), the two processes responsible for K+ retention. Interestingly, we showed that the GDF15-mediated proliferative effect on AIC was dependent on the ErbB2 receptor and required the presence of HKA2. Finally, renal leakage of K+ induced a reduction in muscle mass in GDF15-KO mice fed LK diet. CONCLUSIONS: In this study, we showed that GDF15 and HKA2 are linked and play a central role in the response to K+ restriction by orchestrating the modification of the cellular composition of the collecting duct.

5.
Sci Rep ; 11(1): 1833, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469051

RESUMO

Hyperkalemia is frequently observed in patients at the end-stage of chronic kidney disease (CKD), and has possible harmful consequences on cardiac function. Many strategies are currently used to manage hyperkalemia, one consisting of increasing fecal K+ excretion through the administration of cation-exchange resins. In this study, we explored another more specific method of increasing intestinal K+ secretion by inhibiting the H,K-ATPase type 2 (HKA2), which is the main colonic K+ reabsorptive pathway. We hypothetised that the absence of this pump could impede the increase of plasma K+ levels following nephronic reduction (N5/6) by favoring fecal K+ secretion. In N5/6 WT and HKA2KO mice under normal K+ intake, the plasma K+ level remained within the normal range, however, a load of K+ induced strong hyperkalemia in N5/6 WT mice (9.1 ± 0.5 mM), which was significantly less pronounced in N5/6 HKA2KO mice (7.9 ± 0.4 mM, p < 0.01). This was correlated to a higher capacity of HKA2KO mice to excrete K+ in their feces. The absence of HKA2 also increased fecal Na+ excretion by inhibiting its colonic ENaC-dependent absorption. We also showed that angiotensin-converting-enzyme inhibitor like enalapril, used to treat hypertension during CKD, induced a less severe hyperkalemia in N5/6 HKA2KO than in N5/6 WT mice. This study therefore provides the proof of concept that the targeted inhibition of HKA2 could be a specific therapeutic maneuver to reduce plasma K+ levels in CKD patients.


Assuntos
Colo/metabolismo , Néfrons/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Fezes , Hiperpotassemia/metabolismo , Hiperpotassemia/prevenção & controle , Camundongos , Modelos Animais , Fenótipo , Potássio/sangue
6.
Acta Physiol (Oxf) ; 232(3): e13661, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33840159

RESUMO

AIM: Type A intercalated cells of the renal collecting duct participate in the maintenance of the acid/base balance through their capacity to adapt proton secretion to homeostatic requirements. We previously showed that increased proton secretion stems in part from the enlargement of the population of proton secreting cells in the outer medullary collecting duct through division of fully differentiated cells, and that this response is triggered by growth/differentiation factor 15. This study aimed at deciphering the mechanism of acid load-induced secretion of Gdf15 and its mechanism of action. METHODS: We developed an original method to evaluate the proliferation of intercalated cells and applied it to genetically modified or pharmacologically treated mice under basal and acid-loaded conditions. RESULTS: Gdf15 is secreted by principal cells of the collecting duct in response to the stimulation of vasopressin receptors. Vasopressin-induced production of cAMP triggers activation of AMP-stimulated kinases and of Na,K-ATPase, and induction of p53 and Gdf15. Gdf15 action on intercalated cells is mediated by ErbB2 receptors, the activation of which triggers the expression of cyclin d1, of p53 and anti-proliferative genes, and of Egr1. CONCLUSION: Acidosis-induced proliferation of intercalated cells results from a cross talk with principal cells which secrete Gdf15 in response to their stimulation by vasopressin. Thus, vasopressin is a major determinant of the collecting duct cellular homeostasis as it promotes proliferation of intercalated cells under acidosis conditions and of principal cells under normal acid-base status.


Assuntos
Acidose , Túbulos Renais Coletores , Animais , Proliferação de Células , Camundongos , Néfrons , ATPase Trocadora de Sódio-Potássio
7.
J Clin Invest ; 130(12): 6379-6394, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32790646

RESUMO

Gain-of-function mutations in with no lysine (K) 1 (WNK1) and WNK4 genes are responsible for familial hyperkalemic hypertension (FHHt), a rare, inherited disorder characterized by arterial hypertension and hyperkalemia with metabolic acidosis. More recently, FHHt-causing mutations in the Kelch-like 3-Cullin 3 (KLHL3-CUL3) E3 ubiquitin ligase complex have shed light on the importance of WNK's cellular degradation on renal ion transport. Using full exome sequencing for a 4-generation family and then targeted sequencing in other suspected cases, we have identified new missense variants in the WNK1 gene clustering in the short conserved acidic motif known to interact with the KLHL3-CUL3 ubiquitin complex. Affected subjects had an early onset of a hyperkalemic hyperchloremic phenotype, but normal blood pressure values"Functional experiments in Xenopus laevis oocytes and HEK293T cells demonstrated that these mutations strongly decrease the ubiquitination of the kidney-specific isoform KS-WNK1 by the KLHL3-CUL3 complex rather than the long ubiquitous catalytically active L-WNK1 isoform. A corresponding CRISPR/Cas9 engineered mouse model recapitulated both the clinical and biological phenotypes. Renal investigations showed increased activation of the Ste20 proline alanine-rich kinase-Na+-Cl- cotransporter (SPAK-NCC) phosphorylation cascade, associated with impaired ROMK apical expression in the distal part of the renal tubule. Together, these new WNK1 genetic variants highlight the importance of the KS-WNK1 isoform abundance on potassium homeostasis.


Assuntos
Acidose/metabolismo , Túbulos Renais Distais/metabolismo , Mutação , Pseudo-Hipoaldosteronismo/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Acidose/genética , Acidose/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Animais , Proteínas Culina/genética , Proteínas Culina/metabolismo , Células HEK293 , Humanos , Túbulos Renais Distais/patologia , Camundongos , Camundongos Mutantes , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/patologia , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Xenopus laevis
8.
Sci Rep ; 8(1): 3249, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459793

RESUMO

Mutations of the gene encoding WNK1 [With No lysine (K) kinase 1] or WNK4 cause Familial Hyperkalemic Hypertension (FHHt). Previous studies have shown that the activation of SPAK (Ste20-related Proline/Alanine-rich Kinase) plays a dominant role in the development of FHHt caused by WNK4 mutations. The implication of SPAK in FHHt caused by WNK1 mutation has never been investigated. To clarify this issue, we crossed WNK1+/FHHt mice with SPAK knock-in mice in which the T-loop Thr243 residue was mutated to alanine to prevent activation by WNK kinases. We show that WNK1+/FHHT:SPAK 243A/243A mice display an intermediate phenotype, between that of control and SPAK 243A/243A mice, with normal blood pressure but hypochloremic metabolic alkalosis. NCC abundance and phosphorylation levels also decrease below the wild-type level in the double-mutant mice but remain higher than in SPAK 243A/243A mice. This is different from what was observed in WNK4-FHHt mice in which SPAK inactivation completely restored the phenotype and NCC expression to wild-type levels. Although these results confirm that FHHt caused by WNK1 mutations is dependent on the activation of SPAK, they suggest that WNK1 and WNK4 play different roles in the distal nephron.


Assuntos
Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/fisiopatologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Animais , Cruzamentos Genéticos , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/genética , Proteína Quinase 1 Deficiente de Lisina WNK/genética
9.
Med Sci (Paris) ; 32(3): 274-80, 2016 Mar.
Artigo em Francês | MEDLINE | ID: mdl-27011246

RESUMO

The study of Familial Hyperkalemic Hypertension (FHHt), a rare monogenic disease, allowed remarkable advances in the understanding of the mechanisms of regulation of NaCl reabsorption by the distal nephron. FHHt results from mutations in the genes encoding WNK1 and WNK4, two serine-threonine kinases of the WNK (With No lysine [K]) family. The clinical manifestations of FHHt are due, among others, to an increased activity of the Na(+)-Cl(-) cotransporter NCC. Several groups therefore tried to understand how WNK1 and WNK4 could regulate NCC. However, the data were often contradictory. Two of our recent studies allowed to partially explain these controversies and to propose a new model for the regulation of NCC by the WNKs.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Néfrons/metabolismo , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Cloreto de Sódio/metabolismo , Absorção Fisiológica , Animais , Humanos , Túbulos Renais Distais/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/fisiologia , Proteína Quinase 1 Deficiente de Lisina WNK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA