Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 143(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33009546

RESUMO

Nonperforating ballistic impacts on thoracic armor can cause blunt injuries, known as behind-armor blunt trauma (BABT). To evaluate the potential for this injury, the back face deformation (BFD) imprinted into a clay backing is measured; however, the link between BFD and potential for injury is uncertain. Computational human body models (HBMs) have the potential to provide an improved understanding of BABT injury risk to inform armor design but require assessment with relevant loading scenarios. In this study, a methodology was developed to apply BABT loading to a computational thorax model, enhanced with refined finite element mesh and high-deformation rate mechanical properties. The model was assessed using an epidemiological BABT survivor database. BABT impact boundary conditions for 10 cases from the database were recreated using experimentally measured deformation for specific armor/projectile combinations, and applied to the thorax model using a novel prescribed displacement methodology. The computational thorax model demonstrated numerical stability under BABT impact conditions. The predicted number of rib fractures, the magnitude of pulmonary contusion, and injury rank, increased with armor BFD, back face velocity, and input energy to the thorax. In three of the 10 cases, the model overpredicted the number of rib fractures, attributed to impact location positional sensitivity and limited details from the database. The integration of an HBM with the BABT loading method predicted rib fractures and injury ranks that were in good agreement with available medical records, providing a potential tool for future armor evaluation and injury assessment.


Assuntos
Ferimentos não Penetrantes , Análise de Elementos Finitos
2.
J Mech Behav Biomed Mater ; 116: 104343, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513459

RESUMO

A shear-punch test (SPT) experimental method was developed to address the lack of shear deformation and failure response data for the human skull as a function of local bone microarchitecture. Improved understanding of skull deformation and fracture under varying stress-states helps implement mechanism-based, multi-axial material models for finite element analysis for optimizing protection strategies. Shear-punch coupons (N = 47 specimens) were extracted from right-parietal and frontal bones of three fresh-frozen-thawed human skulls. The specimens were kept as full through-thickness or segmented into the three skull constituent layers: the inner and outer cortical tables and the middle porous diploë. Micro-computed x-ray tomography (µCT) before and after SPT provided the bone volume fraction (BVF) as a function of depth for correlation to shear mechanisms in the punched volumes. Digital image correlation was used to track displacement of the punch above the upper die to minimize compliance error. Five full-thickness specimens were subjected to partial indentation loading to investigate the process of damage development as a function of BVF and depth. It was determined that BVF dominates the shear yield and ultimate strength of human skull bone, but the imposed uniaxial loading rate (0.001 and 0.1 s-1) did not have as strong a contribution (p = 0.181-0.806 > 0.05) for the shear yield and ultimate strength of the skull bone layer specimens. Shear yield and ultimate strength data were highly correlated to power law relationships of BVF (R2 = 0.917-0.949). Full-thickness and partial loaded SPT experiments indicate the diploë primarily dictates the shear strength of the intact structure.


Assuntos
Osso e Ossos , Crânio , Análise de Elementos Finitos , Osso Frontal , Humanos , Porosidade , Resistência ao Cisalhamento , Crânio/diagnóstico por imagem , Estresse Mecânico
3.
Traffic Inj Prev ; 11(2): 194-201, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20373240

RESUMO

OBJECTIVE: The neck injury index, NII, developed in ISO 13232 (2005) as a testing and evaluation procedure for assessing the risk of injury to the AO/C1/C2 region of the cervical spine in motorcycle riders is reevaluated using an existing postmortem human subjects (PMHS) data set and resulting in a reformulated NII criterion applicable to PMHS tests. METHODS: A recent series of 36 PMHS head/neck component tests was used to examine the risk of neck injury in frontal impacts and to assess the predictive capability of NII for impacts of various orientations. Using force and moment load cell PMHS experimental data, injury risk was assessed using NII evaluated with the ISO 13232-5 algorithms. RESULTS: The injury risk predictions are compared with the injury outcomes from the head/neck PMHS. The NII criterion underestimated the injury incidence of the PMHS experimental group. The average predicted risk of injuries for the experimental injury tests based on NII across the MAIS levels was 0.7 percent, though there were 11 AIS 3+ injuries observed in the actual testing (30.6%). Using the experimental injury outcomes and the experimental force and moment time histories, the normalizing coefficients from NII are reevaluated to minimize the difference between NII risk assessment and the experimental injury outcome in the least squares (L(2)) basis. This reanalysis is compared with existing human and PMHS neck injury criteria. CONCLUSIONS: By reanalyzing the NII formulation using an existing PMHS injury data set with known forces and moments and known injury outcomes, a new NII(PMHS) is developed that uses PMHS loads to predict injury. This reformulation removes the dependency of the original NII formulation on the forces and moments from motorcyclist anthropomorphic test device (MATD) experiments and simulations yet retains the advantages of the multi-axial neck injury criterion.


Assuntos
Acidentes de Trânsito , Vértebras Cervicais/lesões , Motocicletas , Lesões do Pescoço , Medição de Risco/métodos , Índices de Gravidade do Trauma , Algoritmos , Humanos , Análise dos Mínimos Quadrados , Distribuição Normal , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA